随着我国航空航天事业飞速发展,新型飞行器的飞行速度越来越快,随之带来的是对其热防护结构的更高要求,由此热结构材料的高温力学性能成为热防护系统与飞行器结构设计的重要依据。数字图像相关法(DIC)是近年来新兴的一种非接触式变形测量方法,相较于传统的变形测量方法,它具有适用范围广、环境适应性强、操作简单和测量精度高的优点,尤其是在高温实验的测量中具有独特的优势。数字图像相关法(DIC)作为一种可视化全场测量手段,可重点关注局域变形带空间特征,结合微观组织表征和时域分析,揭示内在物理机制,为抑制材料PLC效应提供理论基础。 光学非接触应变测量技术通常具有纳米级别的测量精度,能够满足高精度测量的需求。江西光学数字图像相关测量系统

采用三维光学测量技术,可以通过全场非接触式测量方式,测试关键部位变形和损伤的起始位置,并实时记录车桥结构表面的全场变形。能直观地看到测量区域内全部的位移应变数据色谱图,获取全场数百万个点的位移应变数据,而不是位移计或者应变片单有的几十个读数。基于车桥制造商客户的需求,三维技术工程师分别采用光学非接触全场应变测量系统、三维摄影测量系统,测试车桥在两端施加载荷的工况过程中,结构表面位移变化以及部件材料的应变变化。山东哪里有卖三维全场非接触测量系统光学非接触应变测量技术可用于监测皮肤在受到外力作用下的变形情况,为皮肤疾病的诊断等提供辅助手段。

振弦式应变测量传感器的研究起源于20世纪30年代,其工作原理如下:钢弦在一定的张力作用下具有固定的自振频率,当张力发生变化时其自振频率也会随之发生改变。当结构产生应变时,安装在其上的振弦式传感器内的钢弦张力发生变化,导致其自振频率发生变化。通过测试钢弦振动频率的变化值,能够计算得出测点的应力变化值。振弦式应变测量传感器的特点是具有较强的抗干扰能力,在进行远距离输送时信号失真非常小,测量值不受导线电阻变化以及温度变化的影响,传感器结构相对简单、制作与安装的过程比较方便。
技术特点与优势非接触性:避免了传统接触式测量可能引入的误差和损伤,保持被测试物体的完整性和原始状态。高精度:能够在微小尺度下精确测量应变,提供准确的数据支持工程分析和决策。全场测量:能够同时测量物体表面的全场应变分布,有助于了解物体的变形情况。高效率:快速获取数据并进行实时监测,提高了生产效率和质量控制的能力。光学非接触应变测量技术广泛应用于航空航天、土木工程、机械制造、生物医学等领域。例如,在航空航天领域,它用于飞行器的结构健康监测;在土木工程领域,它用于监测大型建筑物和桥梁的结构健康;在机械制造领域,它用于评估机械部件的应力和应变状态;在生物医学领域,它用于研究生物组织的力学性能和变形行为。对于微小的应变变化,光学非接触应变测量技术也能够进行准确测量。

对于复合材料的拉伸试验,可以使用试样一侧的单应变测量来测量轴向应变。然而,通过在试样的相对两侧进行测量并计算它们的平均值,可以得到更一致和准确的结果。使用平均应变测量对于压缩测试至关重要,因为两次测量之间的差异用于检查试样是否过度弯曲。通常在拉伸和压缩测试中确定泊松比需要额外测量横向应变。剪切试验时需要确定剪切应变,剪切应变可以通过测量轴向和横向应变来计算。在V型缺口剪切试验中,应变分布不均匀且集中在试样的缺口之间,为了更加准确地测量这些局部应变需要使用应变仪。通过测量材料在受力情况下的应变分布,可以了解材料的强度、韧性、疲劳寿命等性能指标。新疆哪里有卖光学非接触应变测量
随着科学技术的不断发展,三维应变测量技术也在不断改进和完善。江西光学数字图像相关测量系统
我国西南地区地震频发,大量边坡受强震累积作用产生损伤,极易受天气和人类工程活动影响诱发滑坡灾害,开展强震区岩质边坡长期稳定性研究尤为重要。黄土表(浅)层裂隙及其发育,使得滑坡、崩塌等地质灾害频繁发生,对含裂隙的土质斜坡的研究是一种有益的探索。研究团队通过开展含裂隙黄土斜坡和不含裂隙黄土斜坡的对比振动台模型试验,研究地震荷载作用下黄土斜坡坡面位移和加速度响应规律。通过三维全场应变测量系统,高精度、实时获得斜坡表面的变形量,从斜坡坡面位移和坡体加速度两个方面分析斜坡的动力响应特征,揭示地震作用下两类黄土地震斜坡的动力响应特性。江西光学数字图像相关测量系统