对钢材性能的应变测量主要是检查裂纹、孔、夹渣等,对焊缝主要是检查夹渣、气泡、咬边、烧穿、漏焊、未焊透及焊脚尺寸不够等,对铆钉或螺栓主要是检查漏焊、漏检、错位、烧穿、漏焊、未焊透及焊脚尺寸等。检验方法主要有外观检验、X射线、超声波、磁粉、渗透性等。超声波在金属材料测量中对频率要求高,功率不需要过大,因此测量灵敏度高,测试精度高。超声测量一般采用纵波测量和横波测量(主要用来测量焊缝)。用超声来检查钢结构时,要求测量点的平整度、光滑。在材料科学领域,光学非接触测量可以用于研究材料的力学性能和变形行为。贵州光学数字图像相关技术总代理

随着我国航空航天事业飞速发展,新型飞行器的飞行速度越来越快,随之带来的是对其热防护结构的更高要求,由此热结构材料的高温力学性能成为热防护系统与飞行器结构设计的重要依据。数字图像相关法(DIC)是近年来新兴的一种非接触式变形测量方法,相较于传统的变形测量方法,它具有适用范围广、环境适应性强、操作简单和测量精度高的优点,尤其是在高温实验的测量中具有独特的优势。数字图像相关法(DIC)作为一种可视化全场测量手段,可重点关注局域变形带空间特征,结合微观组织表征和时域分析,揭示内在物理机制,为抑制材料PLC效应提供理论基础。 新疆VIC-2D数字图像相关应变测量利用光学原理进行非接触应变测量,有效评估钢材中孔洞的大小和分布,保障质量。

光学非接触应变测量是一种基于光学原理的高精度测量技术,通过非接触方式获取物体表面应变信息,适用于材料力学性能分析、工程结构监测等领域。一、基本原理数字图像相关技术(DIC)通过追踪物体表面散斑或纹理特征,对比变形前后的图像,计算全场三维位移和应变分布。双目立体视觉系统重建物体三维形貌,结合算法分析应变场23。技术特点:支持动态实时测量,应变分辨率可达5με,位移精度达0.01像素78。光学干涉法利用光波干涉原理,通过分析物体变形引起的光程差变化,获取表面应变信息1。典型应用包括激光散斑干涉和电子散斑干涉。二、关键技术优势非接触式测量:避免对被测物体产生干扰,适用于柔性、高温或易损材料16。全场测量:覆盖被测物体整体表面,提供连续的应变分布云图,优于传统单点测量13。高精度与动态能力:应变分辨率达微应变级别(20με~5με),支持高速动态载荷下的实时监测27。环境适应性:无需严格避震或特殊光源,可在实验室或户外复杂环境中使用
光学应变测量系统(DIC)普遍应用于航空航天领域,用于测量和验证不同工况下结构的形变和振动情况,以一种高精度、非接触式、可视化全场测量的方式,替代传统的引伸计和应变片测量方法。该系统能够方便地整合到例如环境测试箱、风洞、疲劳测试台等测试环境,提供飞机制作过程中的材料测试、零部件检测、整机检测等各阶段的位移、应变测量等数据。飞机在高速飞行时由于气体与蒙皮材料表面摩擦,使大量动能转变为热能并传递到蒙皮表面,所以蒙皮材料在不同攻角、风速、温度中都会受到一定的影响。一些新的技术被引入,如数字图像相关等,这些方法提高了测量的准确性和精度,还扩展了应变测量的应用范围。

垂直位移变形监测技术就是对建筑物进行垂直方向上的变形监测。一般情况下,由于不是很均匀的垂直方向上的位移,会让建筑物产生裂缝。这种监测异常,很可能就是建筑物基础或局部破坏的前奏,因此,垂直位移的变形监测是非常必要的。在进行垂直位移变形监测时,要先监测工作基点的稳定程度,在此基础上再进行垂直位移的变形监测。现有的水利工程用的垂直位移变形监测方法有三种,第1种是几何水准测量的方法,第2种是三角高程测量的方法,第3种为液体静力水准的测量方法。三维应变测量技术的基本原理是根据物体受力或变形时,其表面上的点的位移和形变信息发生变化的规律。上海全场三维数字图像相关总代理
数字图像相关技术(Digital Image Correlation,DIC)是一种非接触式现代光学测量实验技术。贵州光学数字图像相关技术总代理
机械式应变测量方法:机械式应变测量已经有很长的历史,其主要利用百分表或千分表测量变形前后测试标距内的距离变化而得到构件测试标距内的平均应变。工程测量中使用的机械式应变测量仪器主要包括手持应变仪和千分表引伸计。机械式应变测量方法主要优点是读数直观、环境适应能力强、可重复性使用等。但需要人工读数、费时费力、精度差,对于应变测点数量众多的桥梁静载试验显然不合适。因此,除了少数室内模型试验的特殊需要,工程结构中很少使用。贵州光学数字图像相关技术总代理