飞秒激光本身就是科学发现的工具,并不断催生新科学。超快科学:飞秒化学:观测化学反应的中间过程与过渡态(获诺贝尔化学奖)。凝聚态物理:研究高温超导、拓扑材料中的超快电子动力学。极端条件创造:激光粒子加速:在桌面尺度产生高能电子/质子束,用于放疗和基础物理研究。阿秒科学:飞秒激光是产生阿秒脉冲(10⁻¹⁸秒)的“引擎”,用于实时观测原子内电子的运动。精密测量:飞秒光频梳(获诺贝尔物理学奖):提供好的的“光尺”和“光钟”,用于时间基准、、温室气体检测等。飞秒激光切割可针对柔性PET、PI材料或玻璃、硅片基材上的镀层刻蚀、划线、切割,不伤及基材。韩国加工飞秒激光蚀刻

飞秒激光的强大能力源于其极短的脉冲时间和极高的峰值功率。超高峰值功率:虽然单个脉冲的能量可能不高(毫焦耳量级),但由于能量被压缩在极短的时间内释放,其瞬时功率(峰值功率)可以轻松达到太瓦(10¹² 瓦)甚至拍瓦(10¹⁵ 瓦),相当于全球电网总功率的数百倍。超快相互作用:脉冲作用时间远小于材料中能量扩散(热传导、等离子体扩散等)所需的时间(皮秒-纳秒量级)。非线性效应主导:极高的光强使得激光与物质的相互作用从常见的线性吸收(如热效应)转变为多光子吸收、隧道电离等非线性过程。广东韩国加工飞秒激光打孔随着未来手机中蓝宝石和陶瓷等高附加值脆性材料的应用,飞秒激光加工将成为3C自动化设备中重要的组成部分。

飞秒激光开启了“无刀手术”时代。眼科手术(:LASIK手术(飞秒激光制瓣):替代传统的机械角膜刀,制作更好、更平滑的角膜瓣,安全性更高。全飞秒SMILE手术:直接在角膜基质层内进行透镜状切割,然后通过微切口取出,实现了真正的“微创”。白内障手术(飞秒激光辅助):用于精确制作角膜切口、撕裂囊和前囊膜切开、预劈核,大幅提高手术的可预测性。细胞与神经科学:双光子显微成像:利用飞秒激光进行深层的高分辨率、无损伤三维成像。光镊与细胞手术:操纵细胞、细胞器,甚至进行细胞内手术。外科手术:可用于极精密的切割,出血少,愈合快。
这是飞秒激光技术应用的基石:多光子吸收/电离:在极高的光场强度下,材料同时吸收多个光子,跳过中间能级,直接发生电离或激发。这使得透明材料(如玻璃)也能被加工。雪崩电离:初始的自由电子通过逆韧致吸收激光能量,加速并碰撞其他原子,产生更多自由电子,形成雪崩式电离。电子被迅速剥离形成等离子体,留下的带正电离子因强烈库仑斥力而发生飞散。整个过程发生在皮秒量级内,远快于热扩散的时间(微秒量级),因此实现了“冷”烧蚀。飞秒激光加工的脉冲宽度为飞秒级别,1飞秒为1秒的10的负十五次方,是通常意义的一千万亿分之一秒。

飞秒激光在精密加工中的独特能力与应用,超越衍射极限的“超衍射”加工原理:利用多光子吸收的非线性特性,加工阈值非常陡峭,只有焦点中心强度好的区域才会发生改性,加工尺寸可以突破光学衍射极限,达到亚波长甚至纳米级别。应用:微光学元件:制作衍射光学元件、微透镜阵列、波导结构。防伪与装饰:在材料内部或表面制作亚微米结构,产生结构色或特殊光学效果。光子器件:直接在光学材料内部刻写光栅、耦合器。真正的三维(3D)内部加工原理:对于透明材料(如玻璃、透明聚合物),飞秒激光只有在焦点处才能达到足够高的强度引发非线性吸收,从而可以选择性地在材料内部任意位置进行改性,而表面和路径上的材料不受影响。应用:微流控芯片:在玻璃或塑料内部直接雕刻出复杂的三维微通道网络。光数据存储:在玻璃内部写入多层、高密度的数据点,实现“5D存储”。集成光学:在透明基板内部制造三维光波导、分束器、干涉仪。飞秒激光通过透镜聚焦激光可获得高激光强度,因此只能在焦点附近形成微结构。广东飞秒激光颗粒面膜板
飞秒激光是指时域脉冲宽度在飞秒(10-15秒)量级的激光,在时间分辨率上属于超快激光(ultra-fast laser)。韩国加工飞秒激光蚀刻
飞秒激光是一种以 “飞秒” 为脉冲宽度(1飞秒=10⁻¹⁵秒,即千万亿分之一秒)的超快、强脉冲激光。使其在精密加工、科研等领域带来了主要的突破。这是飞秒激光成熟和广泛的应用之一,太赫兹波产生与探测:飞秒激光是产生和探测太赫兹波的主要泵浦源,用于无损检测、安全成像、物质光谱分析等。精密测量:基于飞秒光频梳技术(另一项诺贝尔奖成果),可以用于距离测量、光学时钟、光谱定标等,精度达到纳米甚至更高。文物保护与修复:可以极其精细地除去艺术品表面的污染物层,而不损伤下层宝贵的原始材料。韩国加工飞秒激光蚀刻