传统激光加工(纳秒、微秒激光)主要依靠“热加工”:激光能量被材料吸收,转化为热量,通过热传导使材料熔化、蒸发。这不可避免地带来热影响区、熔渣、微裂纹和热应力。飞秒激光加工的本质是“冷”加工或“非热”加工,其原理基于“多光子吸收/非线性电离”和“超快能量沉积”:能量沉积快于热扩散:飞秒脉冲的持续时间(~100fs)远小于材料中电子-晶格能量传递的时间(皮秒量级)。能量在极短时间内注入电子系统,电子被直接激发或电离,形成高温高密度的等离子体。材料直接被“静电炸飞”:受激的电子来不及将能量传递给周围的晶格,材料通过库仑、直接升华等非热过程被移除。热量“来不及”传导:脉冲已经结束,周围材料仍处于冷态。飞秒激光新技术应用主要应用行业包括:合金微铸造、精确孔径和电极结构加工、航空难材料加工、医疗等领域。上海自动化飞秒激光镜头夹持器

飞秒激光技术它从根本上改变了光与物质相互作用的方式,实现了从“热加工”到“冷加工”的跨越。从让你清晰视界的眼科手术,到驱动未来计算的集成光芯片,再到探索物质基本运动规律的科学工具,飞秒激光正以其无可比拟的精度和灵活性,深度塑造着现代科技与工业的格局。飞秒激光是一种超短脉冲激光。“飞秒”是时间单位,1飞秒 = 10⁻¹⁵ 秒(千万亿分之一秒)。作为对比,一飞秒与一秒的比值,大约相当于一秒与3170万年的比值。飞秒激光的超短脉冲特性,使其能量在材料热扩散之前就已结束作用,实现 “冷加工” 。广东韩国技术飞秒激光超精细飞秒激光加工技术可对PCD、PCBN、陶瓷、硬质合金、不锈钢、热处理钢、钼等各种材质的产品进行细孔加工。

飞秒激光的运用,本质上是将“时间”作为一种全新的、强大的加工维度引入工业与科学。 趋势:功率更高、速度更快:向高平均功率、高重复频率发展,满足工业大规模量产需求。成本下降:主要器件(如飞秒激光器)成本降低,将推动其向更大的工业领域渗透。智能化与集成化:与机器人、在线监测、人工智能结合,实现智能自适应加工。新应用场景拓展:在量子技术、脑科学、深空探测等前沿领域的应用方兴未艾。挑战:初始高:系统和维护成本仍高于传统激光。工艺开发复杂:需要深入理解光与材料的非线性相互作用,工艺窗口需精细优化。加工效率瓶颈:对于大面积加工,其“点扫描”模式效率仍待提升。
飞秒激光本身就是科学发现的工具,并不断催生新科学。超快科学:飞秒化学:观测化学反应的中间过程与过渡态(获诺贝尔化学奖)。凝聚态物理:研究高温超导、拓扑材料中的超快电子动力学。极端条件创造:激光粒子加速:在桌面尺度产生高能电子/质子束,用于放疗和基础物理研究。阿秒科学:飞秒激光是产生阿秒脉冲(10⁻¹⁸秒)的“引擎”,用于实时观测原子内电子的运动。精密测量:飞秒光频梳(获诺贝尔物理学奖):提供好的的“光尺”和“光钟”,用于时间基准、、温室气体检测等。飞秒激光切割可直接对玻璃、硅片、不锈钢等材料做激光划线、刻槽、刻蚀等处理,至小线宽小于10微米。

能量在时间上高度集中:脉冲极短,即使单个脉冲能量不高,其瞬时峰值功率也可轻易达到太瓦(10¹² 瓦)甚至拍瓦(10¹⁵ 瓦)级别,足以击穿任何材料。“冷加工”机制:能量在极短时间内注入,远快于热量向周围材料扩散的时间(通常为皮秒量级)。材料被直接电离成等离子体并瞬间消散,几乎不产生热影响区,避免了熔化、微裂纹和形变。非线性吸收:其极高的光强使得材料同时吸收多个光子,才能发生电离。这种效应具有明确的功率阈值,只在焦点中心极小的体积内发生,实现了突破衍射极限的纳米级精度。宽光谱:超短脉冲意味着极宽的频率带宽,可用于产生超连续谱(白光激光)和精密光谱测量。飞秒激光器属于脉冲振荡激光器, 被定位为脉冲宽度约为 100 fs(飞秒)的激光器。上海自动化飞秒激光镜头夹持器
对于飞秒激光而言,脉冲作用时间已经实际小于1 ps,电子没有足够的时间将能量传递给晶格。上海自动化飞秒激光镜头夹持器
这是飞秒激光技术应用的基石:多光子吸收/电离:在极高的光场强度下,材料同时吸收多个光子,跳过中间能级,直接发生电离或激发。这使得透明材料(如玻璃)也能被加工。雪崩电离:初始的自由电子通过逆韧致吸收激光能量,加速并碰撞其他原子,产生更多自由电子,形成雪崩式电离。电子被迅速剥离形成等离子体,留下的带正电离子因强烈库仑斥力而发生飞散。整个过程发生在皮秒量级内,远快于热扩散的时间(微秒量级),因此实现了“冷”烧蚀。上海自动化飞秒激光镜头夹持器