三)热膨胀系数热膨胀系数反映了材料在温度变化时的尺寸变化特性,其数值大小对于散热基板与电子元件之间的热匹配性有着关键影响。如果散热基板与电子元件的热膨胀系数相差过大,在设备运行过程中,温度的反复变化会导致二者之间产生热应力,可能引发焊点开裂、接触不良等问题,影响电子设备的可靠性和寿命。因此,在选择散热基板时,通常会尽量选用与所连接电子元件热膨胀系数相近的材料,以减少热应力的产生。因此,在选择散热基板时,通常会尽量选用与所连接电子元件热膨胀系数相近的材料,以减少热应力的产生。当碳纳米管和铝基体在相同应力下,碳纳米管的应变明显小于铝基体。上海电子元件散热基板5G基站外壳
材质特性:铜的导热系数非常高,可达380-400W/m・K左右,是一种极为出色的导热材料。此外,铜还具有良好的机械强度和耐腐蚀性,能够承受一定的外力冲击以及恶劣的工作环境。结构与散热机制:铜基散热基板同样有多种结构形式,如平板式铜基板,将电子元件产生的热量迅速收集并在铜基板内快速传导,由于其高导热性,热量能快速扩散至整个基板;还有采用铜柱、热管等与铜基板相结合的复合结构,进一步提升散热效率,热管内的工质在受热蒸发后将热量传递到散热端,再通过冷凝回流,形成高效的热量转移循环。应用场景:常用于对散热要求极高的电子设备,像高功率的服务器芯片、高性能图形处理器(GPU)等,凭借其杰出的导热性能,确保这些发热量大的元件能及时散热,维持稳定工作状态。上海电子元件散热基板5G基站外壳碳纳米管应变小于铝基板的特性使得碳纳米管在承受载荷时能够承受较大的应力而不易断裂。

导热系数是衡量散热基板导热能力的指标,它反映了材料在单位时间内传导热量的快慢程度,单位为瓦特每米开尔文(W/m・K)。导热系数越高,意味着基板能够更迅速地将电子元件产生的热量传导出去,对于保障电子设备的散热效率至关重要。不同类型的散热基板因其材料和结构差异,导热系数有较大不同,如前面提到的铜基散热基板导热系数高于铝基散热基板,这也是在高散热需求场景下优先选择铜基基板的重要原因之一。如前面提到的铜基散热基板导热系数高于铝基散热基板,这也是在高散热需求场景下优先选择铜基基板的重要原因之一。
碳纳米管具有极高的轴向热导率,因而在大功率电子器件散热材料中被寄予厚望。然而,其小尺寸特性严重制约了其实际应用,碳纳米管之间及其与复合材料基体之间的接触电阻、接触热阻均较大,从而使现有碳纳米管复合材料热导率均与人们的期望相距甚远。中科院苏州纳米所先进材料部以自行宏量制备的碳纳米管粉体为基础,通过对其进行不同基团的功能化并与商用导热硅脂复合,详细考察了功能化对碳纳米管在硅脂中的分散及其与硅脂界面浸润性的影响,发现表面荷负电的羧基化碳纳米管能够实现在硅脂中的高浓度分散并形成导热良好的三维网络,大幅降低导热硅脂的传热阻抗。在此基础上,以设计碳纳米管的三维导热网络结构为目的,通过控制碳纳米管的长度、管径等因素,制备出了具有理想三维网络结构的柔性碳纳米管纸,其传热阻抗可低于导热硅脂和商用散热石墨片,且具备固态自支撑特性,在作为导热界面材料时能够在不污染器件表面的条件下实现高效传热。碳纳米管因其独特的纳米结构和优异的力学性能,表现出极高的弹性模量和较小的应变。

碳纳米散热材料的主要特点。高散热性能:碳纳米管具有极高的导热性,能够有效地将热量从热源传导出去,从而显著提高散热效率。低热膨胀率:这种材料的热膨胀率非常低,这意味着它在温度变化时尺寸变化很小,有助于保持设备的稳定性和可靠性。强度大:碳纳米管复合材料具有很高的机械强度,能够承受较大的应力而不容易断裂。耐腐蚀性:该材料还具有优异的耐腐蚀性能,适合在各种严苛环境下使用。绝缘性能:碳纳米散热基板的绝缘性能非常好,能够防止电流泄漏,提高设备的安全性。无静电产生:这种材料在加工和使用过程中不会产生静电,从而避免了静电噪声对电子设备的影响。碳纳米基板的产业化和规模化生产也是未来的重要发展方向。深圳韩国散热基板薄膜散热
碳纳米散热基板是一种具有优异导热性和散热性能的新型散热材料。上海电子元件散热基板5G基站外壳
高散热基板,碳纳米管基板,它是将碳纳米管(CNT)嵌入氧化铝粉末颗粒并与高分子材料混合而成,已成为韩国新的PCB绝缘材料。其特点包括很强散热性能、极低的热膨胀率、强大的强度、优异的耐腐蚀性、出色的绝缘性能以及无静电产生,从而有效解决了PCB散热问题和加工过程中因静电产生的不良静电噪声问题。利用这种碳纳米管复合材料制作的半固化片,在与铜板热压成覆铜板(CCL)后,其散热性能远超MCCL和陶瓷基板。此外,采用我们的半固化片制作的CCL基板,相较于陶瓷基板,具有以下优势:1.成本效益,比陶瓷板更经济,降低了整体成本。2.垂直散热性能很好,散热效果更佳。上海电子元件散热基板5G基站外壳