碳纳米管(CNTs)是散热涂料理想的功能填料。CNTs是良好导热材料之一。CNTs是一维纳米材料,比表面积大,被誉为世界上极黑的物质,辐射系数接近1。纳米纤维状的CNTs,与颗粒状的其它散热填料相比,更容易形成导热网络,对涂层增强增韧效果明显,涂层很薄时,比如5-10微米,就能形成均匀光洁、机械性能优异的膜。碳纳米管散热涂料以辐射能力强、涂层薄、热阻小为特征,可以激发金属散热器表面的共振效应,明显提高远红外发射效率,加快热量从散热器表面的快速散发。适用于薄膜散热、金属基板散热、LED灯基座散热、电器外壳散热。碳纳米管因其独特的纳米结构和优异的力学性能,表现出极高的弹性模量和较小的应变。耐高温散热基板
高发热器件加散热器、导热板当PCB中有少数器件发热量较大时(少于3个)时,可在发热器件上加散热器或导热管,当温度还不能降下来时,可采用带风扇的散热器,以增强散热效果。当发热器件量较多时(多于3个),可采用大的散热罩(板),它是按PCB板上发热器件的位置和高低而定制的特定散热器或是在一个大的平板散热器上抠出不同的元件高低位置。将散热罩整体扣在元件面上,与每个元件接触而散热。但由于元器件装焊时高低一致性差,散热效果并不好。通常在元器件面上加柔软的热相变导热垫来改善散热效果。广东耐高压散热基板电器外壳散热碳纳米基板在生物医学领域具有重要的应用潜力,如生物成像和药物传递等。

碳纳米管具有极高的轴向热导率,因而在大功率电子器件散热材料中被寄予厚望。然而,其小尺寸特性严重制约了其实际应用,碳纳米管之间及其与复合材料基体之间的接触电阻、接触热阻均较大,从而使现有碳纳米管复合材料热导率均与人们的期望相距甚远。中科院苏州纳米所先进材料部李清文研究员课题组以自行宏量制备的碳纳米管粉体为基础,通过对其进行不同基团的功能化并与商用导热硅脂复合,详细考察了功能化对碳纳米管在硅脂中的分散及其与硅脂界面浸润性的影响,发现表面荷负电的羧基化碳纳米管能够实现在硅脂中的高浓度分散并形成导热良好的三维网络,大幅降低导热硅脂的传热阻抗。在此基础上,以设计碳纳米管的三维导热网络结构为目的,通过控制碳纳米管的长度、管径等因素,制备出了具有理想三维网络结构的柔性碳纳米管纸,其传热阻抗可低于导热硅脂和商用散热石墨片,且具备固态自支撑特性,在作为导热界面材料时能够在不污染器件表面的条件下实现高效传热。
石墨烯是一种超轻、超薄、大比表面积的准二维材料,面密度约0.77mg/m2,单层石墨烯的厚度约0.34nm,石墨烯的韧性极好,弹性模量为1.0tpa,微观强度可达30gpa,是传统钢材的100多倍,理论比表面积为2630m2/g,而且具有非常高的导电、导热性能,如电阻率为2×10-6ω.cm,电子迁移率可达2×105cm2/v.s,在室温下水平热导率约为5×103w/m.k。同时,石墨烯具有高的热稳定性、化学稳定性以及优异的抗渗透性和抗磨性能。因此,石墨烯在力学、电子学、光学、热学以及新能源等各领域中都拥有了很好的应用前景,尤其在散热材料的合成应用方面吸引了人们的关注。碳纳米基板和铝基板在力学性能、热学性能、应用领域和成本等方面存在明显的差异。

液冷散热液冷性能好于风冷,因为液体比热容远大于空气。常规液冷热流密度达24W/cm2,微通道液冷热流密度可超过790W/cm2。液冷包括浸没冷却和液冷板。浸没冷却是将设备浸入导热性强、导电性弱的冷却剂中,已用于数据中心、基站冷却。浸没冷却运行参数对冷却效果影响很大,系统循环速度更快、供液温度更低都有利于冷却。液冷板对封装要求更低,可直接接触元器件,应用场景更多。优化通道结构能强化换热。Jiang发现V型肋通道传热性能是光滑通道的2.1倍,因为侧壁边界层被破坏形成二次流,使主流直接与壁面换热。肋片虽能优化传热,但带来更大的流动阻力,为此Chen采用拓扑对矩形通道冷板(RCP)和蛇形通道冷板(SCP)优化得到TCP-RCP和TCP-SCP,如图2所示,优化模型减小流动阻力同时强化散热,TCP最高温度分别降低0.27%和1.08%,温差分别降低19.50%和41.88%。碳纳米基板是由碳纳米材料构成的基板,具有强度高、轻质化、导电性和导热性强等优点。深圳工程塑料散热基板电器外壳散热
纳米碳散热铜箔结合了铜箔的高导热性和纳米碳的高热辐射效能,能将热能迅速转换为红外线射频。耐高温散热基板
碳纳米管(CNTs)是散热涂料较理想的功能填料。通过理论计算和实际测量表明,单壁碳纳米管的室温导热系数高达6600W/m.K,多壁碳纳米管的室温导热系数达3000W/m.K,CNTs是目前世界上已知的较好的导热材料之一 。物体辐射或吸收的能量与它的温度、表面积、黑度等因素有关。CNTs是一维纳米材料,比表面积大,被誉为世界上较黑的物质,这种物质对光线的折射率只有0.045%,吸收率可以达到99.5%以上,辐射系数接近1。碳纳米管散热涂料以涂层薄、热阻小为特征,可以激发金属散热器表面的共振效应,有效提高远红外发射效率,加快热量从散热器表面的快速散发。适用于铜箔散热、铝基板散热、LED灯基座散热、电器外壳散热等多种工作环境。耐高温散热基板