机器视觉是在计算机、电子工程等学科基础上发展起来的一个新的研究方向。典型的机器视觉检测系统主要包括检测对象、计算机、光源和摄像机机器视觉检测系统首先需要在一定的光模式下通过摄像机采集目标图像,然后由计算机对图像进行检测,后面显示检测结果。需要检测的是手机外壳面的表面缺陷。根据不同的光反射率,手机外壳侧面可分为高光表面和亚光表面。高光表面是平面,亚光表面既有平面也有曲面。手机壳体表面的缺陷类型多样,有划痕、边缘磕碰、凹坑、刀纹等,科技对待检测的手机壳体表面进行检查分析得出,要检测的手机壳体表面90%多的缺陷为划痕缺陷和孔洞边缘磕碰缺陷,因此未耒智能针对手机壳体高光表面和亚光表面的划痕缺陷以及亚光表面孔洞边缘磕碰缺陷的检测进行了深入研究,对于不同情况下的缺陷检测采用不同的照明方式以获取利于后续缺陷检测的清晰图像,针对不同情况下缺陷的特点采用不同的缺陷检测算法实现表面缺陷的检测。视机器视觉产品适用于具有挑战性的视觉应用。北京机器视觉制造
特征提取辨识:一般布匹检测(自动识别)先利用高清晰度、高速摄像镜头拍摄标准图像,在此基础上设定一定标准;然后拍摄被检测的图像,再将两者进行对比。但是在布匹质量检测工程中要复杂一些:1.图像的内容不是单一的图像,每块被测区域存在的杂质的数量、大小、颜色、位置不一定一致。2.杂质的形状难以事先确定。3.由于布匹快速运动对光线产生反射,图像中可能会存在大量的噪声。4.在流水线上,对布匹进行检测,有实时性的要求。由于上述原因,图像识别处理时应采取相应的算法,提取杂质的特征,进行模式识别,实现智能分析。湖南多显机器视觉产品方案机器视觉能够设置系统维护人员、使用人员不同的操作权限。
在工业自动化控制中使用机器视觉系统主要原因:重复性——机器可以以相同的方法一次一次的完成检测工作而不会感到疲倦。与此相反,人眼每次检测产品时都会有细微的不同,即使产品时完全相同的。速度——机器能够更快的检测产品。特别是当检测高速运动的物体时,比如说生产线上,机器能够提高生产效率。客观性——人眼检测还有一个致命的缺陷,就是情绪带来的主观性,检测结果会随工人心情的好坏产生变化,而机器没有喜怒哀乐,检测的结果自然非常可观可靠。成本——由于机器比人快,一台自动检测机器能够承担好几个人的任务。而且机器不需要停顿、不会生病、能够连续工作,所以能够极大的提高生产效率。
智能相机(图像采集和分析一体):其他配套外面设备:光源、显示、PLC控制系统等等。机器视觉检测系统采用CCD照相机将被检测的目标转换成图像信号,传送给专门用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号,图像处理系统对这些信号进行各种运算来抽取目标的特征,如面积、数量、位置、长度,再根据预设的允许度和其他条件输出结果,包括尺寸、角度、个数、合格/不合格、有/无等,实现自动识别功能。三目视觉系统的优点是充分利用了第三个摄像机的信息,减少了错误匹配,解决了双目视觉系统匹配的多义性,提高了定位精度,但三目视觉系统要合理安置三个摄像机的相对位置,其结构配置比双目视觉系统更烦琐,而且匹配算法更复杂需要消耗更多的时间,实时性更差。机器视觉系统检测内容有印字错误、内容错误、图像错误、方向错误、漏印、表面缺陷。
70年代,机器视觉形成几个重要研究分支:目标制导的图像处理;图像处理和分析的并行算法;从二维图像提取三维信息;序列图像分析和运动参量求值;视觉知识的表示;视觉系统的知识库等。机器视觉的阿喀琉斯之踵:据麻省理工《技术评论》报道,来自谷歌和OpenAI研究所的研究人员发现了机器视觉算法的一个弱点:机器视觉会被一些经过修改的图像干扰,而人类可以很容易地发现这些图像的修改之处。机器视觉的应用主要有检测和机器人视觉两个方面:检测:又可分为高精度定量检测(例如显微照片的细胞分类、机械零部件的尺寸和位置测量)和不用量器的定性或半定量检测(例如产品的外观检查、装配线上的零部件识别定位、缺陷性检测与装配完全性检测)。机器视觉应用系统包括图像捕捉、数字图像处理模块、智能判断决策模块和机械控制执行模块。北京BOX机器视觉自动化
视觉检测设备具有较宽的光谱响应范围。北京机器视觉制造
医疗图像分析:血液细胞自动分类计数、染色体分析、有害细胞识别等。瓶装啤酒生产流水线检测系统:可以检测啤酒是否达到标准的容量、啤酒标签是否完整。大型工件平行度、垂直度测量仪:采用激光扫描与CCD探测系统的大型工件平行度、垂直度测量仪,它以稳定的准直激光束为测量基线,配以回转轴系,旋转五角标棱镜扫出互相平行或垂直的基准平面,将其与被测大型工件的各面进行比较。在加工或安装大型工件时,可用该认错器测量面间的平行度及垂直度。北京机器视觉制造