生态监测是海洋牧场可持续发展的主要,海洋牧场无人船在此领域发挥着不可替代的作用。它搭载的水质传感器可实时采集数据,并通过无线传输系统发送至控制中心,形成动态监测报告。当检测到水质指标异常,如酸碱度失衡或污染物超标时,系统会自动报警,提醒管理人员采取措施。同时,无人船配备的水下摄像头能观察鱼类生长状态、藻类分布情况,甚至追踪天敌活动轨迹,为生态平衡调控提供依据。通过长期的数据积累,海洋牧场无人船还能帮助建立养殖环境变化模型,预测生态风险,让牧场管理更具前瞻性,为实现“生态友好型”养殖模式奠定基础。小豚自研无人船喷水推进器适用于游艇,无人船动力系统等场景。安徽高速海洋牧场无人船

人工智能技术在海洋牧场无人船的决策系统中得到广泛应用,明显提升了船舶的自主作业能力。通过深度学习算法,无人船可对大量的环境监测数据、生物活动影像进行分析,实现鱼群饥饿等级识别、死鱼模态特征判断等智能功能。在智能投饵场景中,系统可结合鱼群长势预测模型与实时监测数据,自动调整投喂时间与投喂量;死鱼清理作业中,通过识别死鱼的水纹变化特征,引导水下设备完成精细清理。人工智能技术的融入,使海洋牧场无人船从“被动执行指令”向“主动智能决策”转变,为无人值守养殖模式的实现奠定了基础。上海集成海洋牧场无人船东莞小豚智能技术有限公司是工研院全自主无人艇省创新团队成立的产业化公司。

海洋牧场无人船的船体设计需充分适配海上作业环境,兼顾机动性与稳定性。船体尺度通常控制在船长1m至20m的范围内,采用轻量化、高密度的船体材料,降低船舶吃水深度的同时提升抗风浪能力。船体线形设计需优化流体动力性能,减少航行过程中的阻力,提升能源利用效率。此外,船体布局需合理规划任务载荷区域,为投饵机、监测设备、储能装置等提供充足的安装空间,同时保障设备的防护安全。特殊设计的船体结构还能削弱航行扰动与振动噪声,避免对声学、光学监测设备的数据采集精度产生影响。
海洋牧场无人船的动力系统设计需兼顾作业续航与环境适应性,通常采用燃油或电力作为动力源,部分高级机型可实现油电混合驱动。电力驱动模式具有噪音低、污染小的优势,适用于近岸生态敏感型海洋牧场作业;燃油驱动则具备续航里程长、动力强劲的特点,更适合深远海长时间作业。动力系统需为船舶航行提供稳定的推进力,同时为感知设备、监测仪器、通信系统等提供持续的电力支持。其设计需充分考虑海洋环境的特殊性,具备良好的防水、防腐蚀性能,以适应高湿度、高盐雾的海上作业环境,保障设备长期稳定运行。可做船舶改造,实现辅助驾驶系统。

随着养殖业向深远海发展,海洋牧场无人船的应用场景正在不断延伸。在离岸较远的养殖区,传统人工巡检面临成本高、效率低等问题。小豚智能针对这一需求开发的远海型无人船,采用太阳能混合动力系统,续航能力明显提升,可满足连续多天的监测任务。同时,通过卫星通信技术的应用,实现了超视距远程控制,解决了移动网络覆盖不足的难题。这类无人船还可搭载水下机器人,对网箱、锚泊系统等进行多方位检测,为深远海养殖的安全运营提供有力保障。小豚智能在东莞的发展历程,正是高校科研成果青苹果转换成生产应用红苹果的生动实践船舶智能化改造。安徽高速海洋牧场无人船
小豚无人船喷水推进器在船舶上广阔采用。安徽高速海洋牧场无人船
在网箱养殖海洋牧场中,海洋牧场无人船的作业流程形成了标准化的闭环管理。作业前,操作人员通过岸端系统规划航行路线与作业参数,明确各网箱的投饵量、监测点位置等信息;作业中,无人船自主航行至各网箱区域,完成投饵作业后启动水质与生物监测,实时回传作业数据;作业后,系统自动生成作业报告,包含投饵总量、水质监测结果、生物生长状态等信息。这种标准化流程不仅提升了作业效率,还实现了养殖作业的可追溯性,便于操作人员及时发现作业问题并调整策略,推动网箱养殖从经验管理向数据驱动的科学管理转变。安徽高速海洋牧场无人船