双三氟甲烷磺酰亚胺锂基本参数
  • 产地
  • 上海
  • 品牌
  • 上海域伦
  • 型号
  • 齐全
  • 是否定制
双三氟甲烷磺酰亚胺锂企业商机

目前商用锂离子电池通常围绕有机电解液构建,但是由于有机体系本征的高挥发性、易燃等特性使得其存在高加工成本、低安全、非环境友好等问题。近年来,水系电池采用更温和的水作为溶剂**增加了电池器件加工便利性,安全性,然而受限于水的低电化学窗口(1.23V),水系锂电能量密度不足以与目前有机体系抗衡, 2015年 “water in salt”概念指出通过高盐浓度可以大幅度提升水系电解液的电化学窗口,从而实现了更高能量密度的水系锂离子电池器件。“water in salt”电解质指的是浓度为 21 M(mol/kg)的 LiTFSI (双三氟甲烷磺酰亚胺锂) 水溶液,即溶质 LiTFSI 和溶剂水的质量比/体积比都远大于1,从而得名 water-in-salt(盐包水)。“water in salt”电解液除了带给水系电池更好的电化学性能之外,其背后还存在一系列不同于有机体系的界面化学或离子传导机制,这些特殊性质值得进一步挖掘。尤其是在高粘度下其还能保持如此高的电导率,溶剂水对离子传输的促进作用尚未明确。双三氟甲烷磺酰亚胺锂的市场运用范围。节能双三氟甲烷磺酰亚胺锂作用

目前商业上**成功的锂盐是LiPF6,因为它均衡了各项性能,如良好的解离度、溶解性、离子电导率以及能够钝化铝箔等。但它在痕量水存在的情况下会与水反应生成HF侵蚀正极,此外它在80 ℃即发生分解。LiPF6较差的化学稳定性和热稳定性限制了其在高电压三元锂离子电池中的应用,故对于新的替代锂盐的寻找从未停止。其中被深入研究的有双草酸硼酸锂(LiBOB),二氟草酸硼酸锂(LiDFOB),双氟磺酰亚胺锂(LiFSI)及双三氟甲烷磺酰亚胺锂(LiTFSI)等。但在实际应用中,除了成本限制,这些锂盐都有各自的局限性,如LiBOB和LiDFOB较差的溶解性,LiFSI和LiTFSI较差的纯度和在高压下(4.0 V,vs. Li+/Li)对铝箔严重腐蚀等等,所以一般作为添加剂(第4部分介绍)或将几种盐混合使用。锂电池双三氟甲烷磺酰亚胺锂价格优惠双三氟甲烷磺酰亚胺锂主要使用范围。

膦酸酯中作为电解液阻燃溶剂(共溶剂)应用**多的是DMMP。XIANG等发现DMMP基阻燃电解液与Li4Ti5O12负极材料兼容性良好,该阻燃电解液被成功用于高能量密度高电压LiNi0.5Mn1.5O4/Li4Ti5O12全电池体系中。ZENG等以DMMP为主溶剂开发出适用于LiFePO4/SiO全电池体系的阻燃型电解液。WU等将双三氟甲烷磺酰亚胺锂(LiTFSI)作为主盐溶解于一种新型磷酸酯主溶剂中,二甲基(2-甲氧基乙氧基)甲基磷酸酯[dimethyl(2-methoxyethoxy) methylphosphonate,DMMEMP],该阻燃型电解液与金属锂片兼容性良好,适用于LiFePO4/Li电池体系。磷腈类化合物作为阻燃电解液溶剂(共溶剂)的报道较少,ROLLINS等报道了一种氟代六烷氧基环三磷腈[FM-2]共溶剂,能够提高电化学稳定窗口、热稳定性和安全性能高,利于稳定SEI膜,该阻燃电解液被成功应用于石墨/(锰酸锂+三元材料)全电池体系中,当使用量为20%时,可以明显改善全电池的循环性能。

双三氟甲烷磺酰亚胺锂:用作锂离子电池有机电解质锂盐,具有较高的电化学稳定性和电导率。而且在较高的电压下对铝集流体没有腐蚀作用。外观: 白色结晶或粉末含量: ≥99%水分:小于100ppm(水分一般在40ppm左右)熔点: 234-238℃包装: 5KG、50KG桶!1.作为锂电池有机电解质锂盐LiN(CF3S02)2作为锂电解质锂盐,水分要小于100ppm,一般在40ppm左右,才可以使用。用作锂离子电池有机电解质锂盐,具有较高的电化学稳定性和电导率。而且在较高的电压下对铝集流体没有腐蚀作用。用EC/DMC配制成l mol/L电解质溶液。电导率可达1.0x10-2 S/cm。在-30℃下电导率还在10-3 S/cm以上。这对于***应用极为重要。2.作反应催化剂LiN(CF3S02)2:和它的同系列化合物MN(RsS02)2(其中,M为1价阳离子,如H+,U+,Na+等;Rf为CF3,C2F5,C3F7,C4F9等全氟烷基),是用于有机催化裂化、加氢裂化、催化重整、异构化、烯烃水合、甲苯歧化、醇类脱水以及酰基化反应等过程的路易斯酸催化剂。3.制备离子液体。LiN(CF3S02)2:制备重要室温离子液体状态: 工业化生产,月产能在3-5吨双三氟甲烷磺酰亚胺锂用作锂离子电池有机电解质锂盐,具有较高的电化学稳定性和电导率。

吉林大学孙俊奇教授研究小组报道了一种具有自修复性能和高离子导电率的柔性固态凝胶电解质。该凝胶电解质由含有2-脲基-4[H]啶酮(UPy)基团的聚离子液体,咪唑类离子液体和锂盐(双三氟甲烷磺酰亚胺锂)的**溶液经溶剂挥发和热压的方法制备而成。其中,UPy基团间的四重氢键将聚离子液体交联从而形成了稳定的聚离子液体网络。同时,由于聚离子液体和离子液体的相容性和静电相互作用,上述聚离子液体网络可以负载大量的离子液体(离子液体为聚离子液体质量的3.5倍)从而形成了固态的离子液体凝胶(Ionogel)电解质。该凝胶电解质的离子导电率高达1.41×10-3S/cm,同时表现出良好的柔性、弹性和优异的不可燃烧性质。基于该凝胶电解质组装的Li|Ionogel|LiFePO4电池表现出了良好的充放电循环性能,该电池在0.2C倍率下循环120周期后的放电容量和库伦效率分别为147.5mAh g-1和99.7%,上述性能均优于同等条件下以离子液体或传统的液态电解液作为电解质所组装的电池。双三氟甲烷磺酰亚胺锂产量、销量。湖北双三氟甲烷磺酰亚胺锂项目

双三氟甲烷磺酰亚胺锂的分子式。节能双三氟甲烷磺酰亚胺锂作用

如今,锂离子电池被认为是**有前途的大中型能源储能系统之一,然而锂离子电池仍然存在一些缺点,比如功率密度有限,成本高,安全性差等。其中安全问题对于大规模应用是非常重要的,其主要是由电解液和隔膜的热稳定性引起的。商业电解液锂盐一六氟磷酸锂,在60°C以上会与水反应热分解,因此商业锂离子电池通常***于低于60°C温度下使用,并且电池组装时严格要求无水条件。虽然有--些其他的锂盐,例如,四氟硼酸锂,双乙=酸硼酸锂和双三氟甲烷磺酰亚胺锂(LiTFSI)等也得到了***的应用,但均不是LiPF6可行的替代品。传统电解质的组成是将锂盐溶解在溶剂中,锂离子浓度梯度严重,特别是在高充放电速率下。这是由于PF6-的迁移速高于Lit,**终限制了功率的传输并且造成锂枝晶的生长,后者会导致严重的安全问题。另外,现如今广泛应用的多孔聚烯烃隔膜如聚丙烯(PP)和聚2烯(PE)等,当温度升高(>100-150°C)时存在热尺寸收缩,引入额外的安全问题。这样的收缩暴露两个电极直接接触,如果电池过热,可能导致电池内部短路,加速火灾的发生甚至。在功率性能方面,采用了非极性聚烯烃隔膜与极性有机溶剂的相容性差。节能双三氟甲烷磺酰亚胺锂作用

与双三氟甲烷磺酰亚胺锂相关的**
信息来源于互联网 本站不为信息真实性负责