双三氟甲烷磺酰亚胺锂基本参数
  • 产地
  • 上海
  • 品牌
  • 上海域伦
  • 型号
  • 齐全
  • 是否定制
双三氟甲烷磺酰亚胺锂企业商机

基于此,斯坦福大学戴宏杰教授团队提出了一种用于锂金属电池的新型离子液体电解质。该电解液的粘度相较于之前用于锂金属电池的离子液体更低,其组分包括1-乙基-3-甲基咪唑双氟磺酸亚胺([EMIm]FSI与5 M双氟磺酰亚胺锂(LiFSI)及0.16 M双三氟甲烷磺酰亚胺钠(NaTFSI)添加剂(在本文中为了方便将该电解质命名为“EM-5Li-Na”IL电解液)。采用该电解液的Li/Li对称电池可实现1200 h稳定、可逆的Li沉积/溶解循环,Li-Cu电池可实现锂沉积CE≈99%。当锂金属与高容量NCM 811阴极匹配时可分别提供比较大比容量(≈199 mAh g-1)和≈765Wh kg-1的能量密度。即使在高LiCoO2载量(如12 mg cm−2)的情况下,Li-LiCoO2电池在0.7 C充放电率下经过1200次循环后,其容量保持率仍高达81%(相较于初始容量)。这一结果使得具有高安全性,高能量密度和长循环稳定性的锂金属电池具有实用化前景。该研究成果以“High-Safety and High-Energy-Density Lithium Metal Batteries in a Novel Ionic-Liquid Electrolyte”为题发表在国际前列期刊Advanced Materials上。双三氟甲烷磺酰亚胺锂产品介绍。江苏电池级双三氟甲烷磺酰亚胺锂

LiTFSI(双三氟甲烷磺酰亚酰胺锂)锂盐热稳定性优异,但通常会腐蚀铝箔。为解决这一问题,Matsumoto等将LiTFSI锂盐浓度提高,配制了1.8mol/LLiTFSIm(EC):m(DEC)=3:7电解液,使用铝工作电极时其电化学窗口达到了4.5V。通过分析得到由于在高浓度电解液中,铝箔表面形成一-层氟化锂LiF钝化层,成功抑制了铝箔的腐蚀。Wang等研究了高浓度的LiN(SO2F)2(LiFSA)/碳酸二甲酯(DMC)电解液体系,其可形成三维网络状结构,从而在5V电压条件下有效阻止过渡金属和铝的溶解,高电压石墨C/LiNi0.5Mn1.5O4电池具有优异的循环性能。在10mol/LLiFSI-DMC高浓度电解液中,由于其可形成含氟量较高的界面保护层,在充电电压达到4.6V时,经过100次循环后,Li/NMC622电池保持了86%的初始放电容量。高浓度电解液具有高的抗氧化还原性,高载流子密度,可抑制铝箔腐蚀,热稳定性好等优点,具有应用于高电压电解液的潜力。然而其也存在不足,如电导率较低、成本较高等,如何提高电导率,降低成本,是推动高浓度电解液实用化进程的关键。宁夏发展双三氟甲烷磺酰亚胺锂双三氟甲烷磺酰亚胺类离子液体对产紫青霉菌株全细胞催化特性的影响。

LiTFSI(双三氟甲烷磺酰亚酰胺锂)锂盐热稳定性优异,但通常会腐蚀铝箔。为解决这一问题,Matsumoto等将LiTFSI锂盐浓度提高,配制了1.8mol/LLiTFSIm(EC)∶m(DEC)=3:7电解液,使用铝工作电极时其电化学窗口达到了4.5V。通过分析得到由于在高浓度电解液中,铝箔表面形成一层氟化锂LiF钝化层,成功抑制了铝箔的腐蚀。Wang等研究了高浓度的LiN(SO2F)2(LiFSA)/碳酸二甲酯(DMC)电解液体系,其可形成三维网络状结构,从而在5V电压条件下有效阻止过渡金属和铝的溶解,高电压石墨C/LiNi0.5Mn1.5O4电池具有优异的循环性能。在10mol/LLiFSI-DMC高浓度电解液中,由于其可形成含氟量较高的界面保护层,在充电电压达到4.6V时,经过100次循环后,Li/NMC622电池保持了86%的初始放电容量。高浓度电解液具有高的抗氧化还原性,高载流子密度,可抑制铝箔腐蚀,热稳定性好等优点,具有应用于高电压电解液的潜力。然而其也存在不足,如电导率较低、成本较高等,如何提高电导率,降低成本,是推动高浓度电解液实用化进程的关键。

随后研究人员将制备的中性高浓度锌离子电解质、锂锰氧(LiMn2O4)正极、Zn负极组装成完整的纽扣电池,并测试了电池的电化学性能。在0.4C倍率下,电池能量密度可达180 Wh kg–1,经过4000次循环后,电池仍可保持85%的初始容量,库伦效率近100%;而将该电解质应用于以氧气为正极的的Zn空气电池中同样获得了优异的性能,即电池能量密度可达300 Wh kg–1,循环次数达200余次。上述结果表明,新型的高浓度中性Zn离子电解质能够有效地抑制充放电循环中枝晶的形成,从而***改善电池循环稳定性和寿命。而结构表征、谱学研究以及分子动力学综合研究揭露了该电池性能增强原因来源于高浓度水系电解质中Zn2+的溶剂化-保护层结构,即Zn2+周围被大量双三氟甲烷磺酰亚胺阴离子迫包围,避免其与水分子接触从而形成离子对(Zn-TFSI)+,有效抑制(Zn-(H2O)6)2+的形成,进而避免化学惰性的氧化锌枝晶的形成。双三氟甲烷磺酰亚胺锂可用于制备离子液体。

酯类和醚类是电池中**常用的两类有机电解液溶剂,而常用的盐有六氟磷酸盐,高氯酸盐,三氟甲基磺酸盐,双三氟甲烷磺酰亚胺盐等。在对硬碳的报道中,酯类电解液是**常用的,但醚类电解液可以实现更好的倍率性能和首效。电解液溶剂和盐的种类,以及电解液的浓度,可以影响SEI膜的组成,从而影响硬碳负极的循环性能。通过在电解液中加入少量的添加剂,可以***的提高硬碳负极的性能。比如,添加2-5%的氟代碳酸乙烯酯(Fluoroethylene Carbonate,FEC)可以在硬碳负极表面生成稳定的SEI膜,而加入碳酸亚乙烯酯(Vinylene Carbonate,VC)则可以提高SEI膜的热稳定性,从而提高电池的高温性能。也有一些基于磷酸三甲酯(trimethyl phosphate,TMP)的不可燃电解液,可以提高电池的安全性,因而也非常值得关注。硬碳负极的材料和电解液优化策略。双三氟甲烷磺酰亚胺锂产量、销量。新型双三氟甲烷磺酰亚胺锂的制备

双三氟甲烷磺酰亚胺锂是否能与水反应生成硫化氢。江苏电池级双三氟甲烷磺酰亚胺锂

我国销售行业是受经济波动以及政策影响较大、周期性较强的行业,行业的周期性与经济增长的周期性保持着较大的相关性,近几年,随着科学技术的进步,及处于新技术**前沿的材料科学、信息科学和生命科学的崛起,客观上极大地促进了精细化工的迅猛发展。单一功能的碳酸锂,氢氧化锂,硫酸锂,氟化锂已远远不能满足现代工业的巨大需求,多样化的产品已势在必行。如复合陶瓷耐高温防腐涂料、导电聚苯胺重防腐蚀涂料、自愈合重防腐涂料、纳米复合粉末渗锌加重防腐涂料。在行业细分领域,我国有限责任公司产业的发展带动化工物流的需求。一方面,化工品大量进出口需要专业化工跨境物流服务商提供服务;一方面我国化工品的生产和消费存在区域不平衡,使得国内化工品运输需求较大。过去“企业扩大=厂房面积扩大+生产设备增加”的简单思维已然过时。如何让新厂房比旧厂房更“好”而不只是更“大”,如何提升企业的生产“质量和效率”而不仅*是扩大生产“规模”,成为了现代化工原料及产品的生产加工及销售碳酸锂 1.用于狂燥性,制作剂等。是制取锂化合物和金属锂的原料。可作铝冶炼的电解浴添加剂。在玻璃、陶瓷、医药和食品等工业中应用,亦可用于合成橡胶、染料、半导体及工业等方面。 2.用作抗躁狂药。用作搪瓷玻璃的添加剂,可增加搪瓷的光滑度,降低熔化点,并增强瓷器的耐酸、耐冷激、热激性能。在显像管制造中,它可提高显像管的稳定性并增加强度、清晰度,并降低表面粗糙度。还用于制造其他锂化合物、荧光粉及电解铝工业等。 3.用作光谱分析试剂,催化剂。用于锂盐制备,制药及陶瓷、玻璃工业。 4.用作铝冶炼的电解添加剂和用于电镀处理中。 氟化锂 用于铝电解和稀土电解的添加剂,降低电解质熔点和粘度,提高电流效率;在陶瓷工业中,用于降低窑温和改进耐热冲击性、磨损性和酸腐蚀性;同时还用于制取各种含氟化锂单晶的原料、特殊光学仪器及激光。 硫酸锂 分离钙和镁。制药工业。陶瓷工业。 氢氧化锂 用于制锂盐及锂基润滑脂,碱性蓄电池的电解液,溴化锂制冷机吸收液等 醋酸锂 饱和和不饱和的脂肪酸的分离,制药工业用于制备剂,也用作锂离子电池原料。企业的重要课题。江苏电池级双三氟甲烷磺酰亚胺锂

与双三氟甲烷磺酰亚胺锂相关的**
信息来源于互联网 本站不为信息真实性负责