双三氟甲烷磺酰亚胺锂基本参数
  • 产地
  • 上海
  • 品牌
  • 上海域伦
  • 型号
  • 齐全
  • 是否定制
双三氟甲烷磺酰亚胺锂企业商机

1994年,Dahn等报道了***个水系锂离子电池,该体系分别使用LiMn2O4和VO2作为正、负极,以5 mol/L LiNO3和0.001 mol/L LiOH作为电解液,在1.5 V的平均电压下循环100次后容量保持率达到80%。然而,水的电化学窗口较窄,限制了电极材料的选择范围,导致了传统水系锂离子电池的能量密度很低。为了进一步提高能量密度,2015年,王春生等报道了宽电位“water in salt”电解液,负极侧双三氟甲基磺酰亚胺(TFSI)的还原导致的钝化作用和正极侧Li+的溶剂化以及TFSI离子的作用,使电化学窗口扩大至3 V,如图5所示。使用该电解液组装了2.3 V的水系锂离子电池并循环了1000多次,无论在较低(0.15 C)、还是较高(4.5 C)倍率下放电和充电库仑效率均接近100%。在此研究基础上,该课题组又使用三(三甲基甲硅烷基)硼酸酯(TMSB)作为添加剂,通过TMSB的电化学氧化形成阴极电解质界面(CEI),使LiCoO2在更高的截止电压下稳定充电/放电,并具有170 mA·h/g的高容量。当与Mo6S8阳极配对时电压为2.5 V,能量密度达到120 W·h/kg(1000个循环),每循环0.013%的极低容量衰减率。随后,又有更宽电位的“water in bisalt”电解液被报道,拓宽了电极材料选择的范围。双三氟甲烷磺酰亚胺锂是重要的含氟有机离子化合物,其应用在二次锂电池、超级电容器。高纯双三氟甲烷磺酰亚胺锂代理价钱

如今,锂离子电池被认为是**有前途的大中型能源储能系统之一,然而锂离子电池仍然存在一些缺点,比如功率密度有限,成本高,安全性差等。其中安全问题对于大规模应用是非常重要的,其主要是由电解液和隔膜的热稳定性引起的。商业电解液锂盐一六氟磷酸锂,在60°C以上会与水反应热分解,因此商业锂离子电池通常***于低于60°C温度下使用,并且电池组装时严格要求无水条件。虽然有--些其他的锂盐,例如,四氟硼酸锂,双乙=酸硼酸锂和双三氟甲烷磺酰亚胺锂(LiTFSI)等也得到了***的应用,但均不是LiPF6可行的替代品。传统电解质的组成是将锂盐溶解在溶剂中,锂离子浓度梯度严重,特别是在高充放电速率下。这是由于PF6-的迁移速高于Lit,**终限制了功率的传输并且造成锂枝晶的生长,后者会导致严重的安全问题。另外,现如今广泛应用的多孔聚烯烃隔膜如聚丙烯(PP)和聚2烯(PE)等,当温度升高(>100-150°C)时存在热尺寸收缩,引入额外的安全问题。这样的收缩暴露两个电极直接接触,如果电池过热,可能导致电池内部短路,加速火灾的发生甚至。在功率性能方面,采用了非极性聚烯烃隔膜与极性有机溶剂的相容性差。立体化双三氟甲烷磺酰亚胺锂咨询问价双三氟甲烷磺酰亚胺锂产品介绍。

目前商业上**成功的锂盐是LiPF6,因为它均衡了各项性能,如良好的解离度、溶解性、离子电导率以及能够钝化铝箔等。但它在痕量水存在的情况下会与水反应生成HF侵蚀正极,此外它在80 ℃即发生分解。LiPF6较差的化学稳定性和热稳定性限制了其在高电压三元锂离子电池中的应用,故对于新的替代锂盐的寻找从未停止。其中被深入研究的有双草酸硼酸锂(LiBOB),二氟草酸硼酸锂(LiDFOB),双氟磺酰亚胺锂(LiFSI)及双三氟甲烷磺酰亚胺锂(LiTFSI)等。但在实际应用中,除了成本限制,这些锂盐都有各自的局限性,如LiBOB和LiDFOB较差的溶解性,LiFSI和LiTFSI较差的纯度和在高压下(4.0 V,vs. Li+/Li)对铝箔严重腐蚀等等,所以一般作为添加剂(第4部分介绍)或将几种盐混合使用。

尖晶石型锰酸锂(LiMn2O4)正极作为一种主流的水系锂电池正极材料被***用于水系锂离子电池,研究表明其电化学性能高度依赖于锰酸锂材料自身化学组分、颗粒尺寸、晶体结构和形貌等材料属性。本文针对性选取了LiMn2O4、铝掺杂LiAlxMn2-xO4、富锂Li1+xMn2-xO4三种典型的尖晶石型LiMn2O4,通过一系列分析、表征手段研究循环前后其晶体结构、材料形貌以及化学组分的变化,探究在高盐浓度Water-in-salt (WIS)水系电解液(21 mol/kg的双三氟甲烷磺酰亚胺锂(LiTFSI)溶液)中三种材料电化学性能不同的原因。研究发现充放电时未经处理的尖晶石LiMn2O4因为严重的Mn溶解和Jahn-Teller效应产生了不可逆的相变和形貌变化,容量衰减严重,循环性能差;铝掺杂一定程度上抑制了尖晶石锰酸锂的Jahn-Teller效应,但不能完全解决Mn溶解和晶格畸变问题,也存在较严重的容量衰减;富锂Li1+xMn2-xO4可以有效抑制尖晶石锰酸锂在水系电解液中的Mn溶解和Jahn-Teller畸变,晶体结构稳定,综合电化学性能好,适合用于水系锂离子电池,提高其整体电化学性能。双三氟甲烷磺酰亚胺锂产品规格、参数。

LiTFSI(双三氟甲烷磺酰亚酰胺锂)锂盐热稳定性优异,但通常会腐蚀铝箔。为解决这一问题,Matsumoto等将LiTFSI锂盐浓度提高,配制了1.8mol/LLiTFSIm(EC)∶m(DEC)=3:7电解液,使用铝工作电极时其电化学窗口达到了4.5V。通过分析得到由于在高浓度电解液中,铝箔表面形成一层氟化锂LiF钝化层,成功抑制了铝箔的腐蚀。Wang等研究了高浓度的LiN(SO2F)2(LiFSA)/碳酸二甲酯(DMC)电解液体系,其可形成三维网络状结构,从而在5V电压条件下有效阻止过渡金属和铝的溶解,高电压石墨C/LiNi0.5Mn1.5O4电池具有优异的循环性能。在10mol/LLiFSI-DMC高浓度电解液中,由于其可形成含氟量较高的界面保护层,在充电电压达到4.6V时,经过100次循环后,Li/NMC622电池保持了86%的初始放电容量。高浓度电解液具有高的抗氧化还原性,高载流子密度,可抑制铝箔腐蚀,热稳定性好等优点,具有应用于高电压电解液的潜力。然而其也存在不足,如电导率较低、成本较高等,如何提高电导率,降低成本,是推动高浓度电解液实用化进程的关键。双三氟甲烷磺酰亚胺锂作为锂电池有机电解质锂盐。绿色双三氟甲烷磺酰亚胺锂氯化锂供应

双三氟甲烷磺酰亚胺锂用作锂离子电池有机电解质锂盐,具有较高的电化学稳定性和电导率。高纯双三氟甲烷磺酰亚胺锂代理价钱

目前商用锂离子电池通常围绕有机电解液构建,但是由于有机体系本征的高挥发性、易燃等特性使得其存在高加工成本、低安全、非环境友好等问题。近年来,水系电池采用更温和的水作为溶剂**增加了电池器件加工便利性,安全性,然而受限于水的低电化学窗口(1.23V),水系锂电能量密度不足以与目前有机体系抗衡, 2015年 “water in salt”概念指出通过高盐浓度可以大幅度提升水系电解液的电化学窗口,从而实现了更高能量密度的水系锂离子电池器件。“water in salt”电解质指的是浓度为 21 M(mol/kg)的 LiTFSI (双三氟甲烷磺酰亚胺锂) 水溶液,即溶质 LiTFSI 和溶剂水的质量比/体积比都远大于1,从而得名 water-in-salt(盐包水)。“water in salt”电解液除了带给水系电池更好的电化学性能之外,其背后还存在一系列不同于有机体系的界面化学或离子传导机制,这些特殊性质值得进一步挖掘。尤其是在高粘度下其还能保持如此高的电导率,溶剂水对离子传输的促进作用尚未明确。高纯双三氟甲烷磺酰亚胺锂代理价钱

与双三氟甲烷磺酰亚胺锂相关的**
信息来源于互联网 本站不为信息真实性负责