双三氟甲烷磺酰亚胺锂基本参数
  • 产地
  • 上海
  • 品牌
  • 上海域伦
  • 型号
  • 齐全
  • 是否定制
双三氟甲烷磺酰亚胺锂企业商机

中科院物理研究所李泓和禹习谦研究员等人采用原位微分电化学质谱(DEMS)来研究LiCoO2|PEO-LiTFSI|Li电池中的产气行为。通过实验和理论计算表明,LiCoO2的表面催化作用是PEO在4.2 V意外析出H2气体的根本原因。使用稳定的固态电解质Li1.4Al0.4Ti1.6(PO4)3(LATP)对LiCoO2表面进行包覆可以减轻这种表面催化作用,并将电池工作电压扩展到4.5 V以上。同时还解释了产气的原因:双三氟甲烷磺酰亚胺(HTFSI)在正极侧因被氧化脱水而产生,并在负极极侧与金属锂反应导致了氢气的析出。相关研究成果以“Increasing Poly(ethyleneoxide) Stability to 4.5 V by Surface Coating of the Cathode”为题发表在ACS Energy Letters上。双三氟甲烷磺酰亚胺锂熔点: 234-238℃。山东电池级双三氟甲烷磺酰亚胺锂

目前商业上**成功的锂盐是LiPF6,因为它均衡了各项性能,如良好的解离度、溶解性、离子电导率以及能够钝化铝箔等。但它在痕量水存在的情况下会与水反应生成HF侵蚀正极,此外它在80 ℃即发生分解。LiPF6较差的化学稳定性和热稳定性限制了其在高电压三元锂离子电池中的应用,故对于新的替代锂盐的寻找从未停止。其中被深入研究的有双草酸硼酸锂(LiBOB),二氟草酸硼酸锂(LiDFOB),双氟磺酰亚胺锂(LiFSI)及双三氟甲烷磺酰亚胺锂(LiTFSI)等。但在实际应用中,除了成本限制,这些锂盐都有各自的局限性,如LiBOB和LiDFOB较差的溶解性,LiFSI和LiTFSI较差的纯度和在高压下(4.0 V,vs. Li+/Li)对铝箔严重腐蚀等等,所以一般作为添加剂(第4部分介绍)或将几种盐混合使用。宁夏双三氟甲烷磺酰亚胺锂分解双三氟甲烷磺酰亚胺锂是重要的含氟有机离子化合物,其应用在二次锂电池、超级电容器。

中科院兰州化学物理研究所阎兴斌研究员、兰州大学栗军帅教授课题组成功开发出一种混合水系/非水系water-in-bisalt电解质,其中水系电解质的组成为7 m 三氟甲烷磺酸锂(LiOTF)和21m 双三氟甲烷磺酰亚胺锂(LiTFSI);非水系电解质的组成为LiTFSI溶于碳酸二甲酯(DMC),比例为1:1.2 (i.e.,9.25 m LiTFSI)。所制备出的混合电解质不仅具有优异的阻燃性能,而且有助于形成高质量的SEI层来保护工作电极。随后以KS6石墨为正极,以五氧化二铌(Nb2O5)为负极再搭配混合电解质组装出的DIB具有优异的电化学综合性能,包括稳定的工作电压窗口0–3.2 V,高初始比容量47.6 mAh g−1及可接受的循环保留容量29.6 mAh g−1。此外,DIB的medium放电电压可高达2.2V,库伦效率可达93.9%,该性能与使用有机电解质的DIBs相当。同时,DIB具有良好的倍率性能和容量可逆性。

电解液是锂电池四大关键材料之一,号称锂电池的“血液”,是锂电池获得高电压、高比能等优点的保证,锂电池电解液是由六氟磷酸锂加上有机溶剂配成,六氟磷酸锂是电解液****的原材料,主要用于笔记本电脑、移动电话、消费电子产品和电动汽车等电子产品的锂离子充电电池的主要原材料。其生产成本为10万元/吨,当前售价超过30万元/吨。随着新能源车的发展,对电解液需求拉动将增大,未来3-5年电解液行业需求较为旺盛,故此未来市场在这一块的前景很乐观。双三氟甲烷磺酰亚胺锂消费地区。

    双三氟甲烷磺酰亚胺锂:1.作为锂电池有机电解质锂盐LiN(CF3S02)2作为锂电解质锂盐,水分要小于100ppm,一般在40ppm左右,才可以使用。用作锂离子电池有机电解质锂盐,具有较高的电化学稳定性和电导率。而且在较高的电压下对铝集流体没有腐蚀作用。用EC/DMC配制成lmol/L电解质溶液。电导率可达S/cm。在-30℃下电导率还在10-3S/cm以上。这对于***应用极为重要。2.作反应催化剂LiN(CF3S02)2:和它的同系列化合物MN(RsS02)2(其中,M为1价阳离子,如H+,U+,Na+等;Rf为CF3,C2F5,C3F7,C4F9等全氟烷基),是用于有机催化裂化、加氢裂化、催化重整、异构化、烯烃水合、甲苯歧化、醇类脱水以及酰基化反应等过程的路易斯酸催化剂。3.制备离子液体。 双三氟甲基磺酰亚胺锂可用于制备锂电池的电解质以及新型稀土路易斯酸催化剂。湖北双三氟甲烷磺酰亚胺锂要多少钱

双三氟甲烷磺酰亚胺锂用作锂离子电池有机电解质锂盐,具有较高的电化学稳定性和电导率。山东电池级双三氟甲烷磺酰亚胺锂

    锂金属电池是下一代相当有前景的高能量密度存储设备之一。然而,锂金属在循环过程中产生的枝晶可刺破隔膜,引起电池短路甚至。采用固态电解质代替易燃的液态电解质可从根本上解除锂金属电池的安全隐患。其中,聚合物固态电解质具有良好的柔性、优异的加工性和电解质-电极界面相容性。然而,聚合物电解质室温电导较低、机械强度较弱,限制了其广泛应用。目前,对聚合物电解质的研究多聚焦在提高其离子电导率。离子电导率由固态电解质的离子电导对电解质厚度和面积进行标准化处理计算得到。不同固态电解质的厚度相差较大,因此,即使电导率相近,厚度的差异导致了锂离子在固态电解质中迁移距离的不同,直接影响了全固态电池电化学性能和能量密度。近期,华中科技大学李真教授和黄云辉教授研究团队报道了一种可规模化制备的超薄柔性聚合物电解质。他们利用简单的溶剂挥发法将聚环氧乙烷(PEO)/双三氟甲烷磺酰亚胺锂(LiTFSI)聚合物电解质填充至聚乙烯隔膜的孔道内,制备了厚度*为μm的超薄复合聚合物电解质。作者采用价廉易得、高力学性能、高孔隙率的电池隔膜作为支撑体,保证了超薄固态电解质的力学强度、防止全固态电池在组装、使用过程中发生内短路。山东电池级双三氟甲烷磺酰亚胺锂

与双三氟甲烷磺酰亚胺锂相关的**
信息来源于互联网 本站不为信息真实性负责