双三氟甲烷磺酰亚胺锂基本参数
  • 产地
  • 上海
  • 品牌
  • 上海域伦
  • 型号
  • 齐全
  • 是否定制
双三氟甲烷磺酰亚胺锂企业商机

2020年2月5日,崔屹团队***报道防火、超轻聚合物-聚合物固态电解质(SSE)。相关论文以“A Fireproof, Lightweight, Polymer–Polymer Solid-State Electrolyte for Safe Lithium Batteries”为题,发表在《Nano Lett.》上。该聚合物固态电解质以多孔聚酰亚胺作为机械增强框架材料,添加阻燃剂(十溴二苯乙烷,DBDPE)和离子导电聚合物电解质(聚环氧乙烷/双三氟甲烷磺酰基锂)。聚合物固态电解质由有机材料制成,具有可调节的膜厚度(10–25μm),与传统的隔膜/液体电解质相比,具有更高的能量密度。PI / DBDPE膜具有热稳定性、不可燃性和高机械强度,能够保证Li-Li对称电池稳定循环300小时不发生短路。制成的LiFePO4/ Li半电池在60°C 下表现出高速率性能(在1 C下为131 mAh g–1)和循环性能(在C/2速率下,300个循环)。值得一提的是,即使在火焰下测试,该聚合物固态电解质制成的软包电池仍能正常工作。双三氟甲烷磺酰亚胺锂主要使用范围。重庆质量双三氟甲烷磺酰亚胺锂

目前商业上**成功的锂盐是LiPF6,因为它均衡了各项性能,如良好的解离度、溶解性、离子电导率以及能够钝化铝箔等。但它在痕量水存在的情况下会与水反应生成HF侵蚀正极,此外它在80 ℃即发生分解。LiPF6较差的化学稳定性和热稳定性限制了其在高电压三元锂离子电池中的应用,故对于新的替代锂盐的寻找从未停止。其中被深入研究的有双草酸硼酸锂(LiBOB),二氟草酸硼酸锂(LiDFOB),双氟磺酰亚胺锂(LiFSI)及双三氟甲烷磺酰亚胺锂(LiTFSI)等。但在实际应用中,除了成本限制,这些锂盐都有各自的局限性,如LiBOB和LiDFOB较差的溶解性,LiFSI和LiTFSI较差的纯度和在高压下(4.0 V,vs. Li+/Li)对铝箔严重腐蚀等等,所以一般作为添加剂(第4部分介绍)或将几种盐混合使用。广东双三氟甲烷磺酰亚胺锂订制价格双三氟甲烷磺酰亚胺锂:作为锂电池有机电解质锂盐。

吉林大学孙俊奇教授研究小组报道了一种具有自修复性能和高离子导电率的柔性固态凝胶电解质。该凝胶电解质由含有2-脲基-4[H]啶酮(UPy)基团的聚离子液体,咪唑类离子液体和锂盐(双三氟甲烷磺酰亚胺锂)的**溶液经溶剂挥发和热压的方法制备而成。其中,UPy基团间的四重氢键将聚离子液体交联从而形成了稳定的聚离子液体网络。同时,由于聚离子液体和离子液体的相容性和静电相互作用,上述聚离子液体网络可以负载大量的离子液体(离子液体为聚离子液体质量的3.5倍)从而形成了固态的离子液体凝胶(Ionogel)电解质。该凝胶电解质的离子导电率高达1.41×10-3S/cm,同时表现出良好的柔性、弹性和优异的不可燃烧性质。基于该凝胶电解质组装的Li|Ionogel|LiFePO4电池表现出了良好的充放电循环性能,该电池在0.2C倍率下循环120周期后的放电容量和库伦效率分别为147.5mAh g-1和99.7%,上述性能均优于同等条件下以离子液体或传统的液态电解液作为电解质所组装的电池。

    锂金属电池是下一代相当有前景的高能量密度存储设备之一。然而,锂金属在循环过程中产生的枝晶可刺破隔膜,引起电池短路甚至。采用固态电解质代替易燃的液态电解质可从根本上解除锂金属电池的安全隐患。其中,聚合物固态电解质具有良好的柔性、优异的加工性和电解质-电极界面相容性。然而,聚合物电解质室温电导较低、机械强度较弱,限制了其广泛应用。目前,对聚合物电解质的研究多聚焦在提高其离子电导率。离子电导率由固态电解质的离子电导对电解质厚度和面积进行标准化处理计算得到。不同固态电解质的厚度相差较大,因此,即使电导率相近,厚度的差异导致了锂离子在固态电解质中迁移距离的不同,直接影响了全固态电池电化学性能和能量密度。近期,华中科技大学李真教授和黄云辉教授研究团队报道了一种可规模化制备的超薄柔性聚合物电解质。他们利用简单的溶剂挥发法将聚环氧乙烷(PEO)/双三氟甲烷磺酰亚胺锂(LiTFSI)聚合物电解质填充至聚乙烯隔膜的孔道内,制备了厚度*为μm的超薄复合聚合物电解质。作者采用价廉易得、高力学性能、高孔隙率的电池隔膜作为支撑体,保证了超薄固态电解质的力学强度、防止全固态电池在组装、使用过程中发生内短路。双三氟甲烷磺酰亚胺类离子液体对产紫青霉菌株全细胞催化特性的影响。

据外媒报道,巴西圣保罗大学化学研究所(the University of São Paulo's Chemistry Institute,IQ-USP)的研究人员发现,可以用高浓度的含水电解液,即水溶盐电解液,替代汽车电池和其他电化学装置中的有机溶剂,而且此类电解液具有成本低、无毒性等优势。研究人员表示:“水溶盐电解液指的是极少量的水加高浓度的盐组成的溶液,水的量刚好能够溶解离子,促成溶剂的形成。与传统解决方案不同,该系统不含游离水。”此外,只有由一个大的阴离子与一个小的阳离子组成的盐分子才可被溶解。例如,双三氟甲烷磺酰亚胺锂(CF3SO2NLiSO2CF3)、氯化钠或食盐都没有用,因为它们的阳离子和阴离子大小相似。由于此种高浓度的溶液中没有游离水,电解水分解成氢和氧就会变得更加困难,因此,尽管该系统不含水,该溶液的电化学稳定性仍然很高。综上所述,此种基于高浓度水溶盐溶液的创新技术比将盐溶解于有机化合物的传统技术更具明显优势,不过,水溶盐电解液技术的应用也面临着挑战。双三氟甲烷磺酰亚胺锂作为锂电池有机电解质锂盐。重庆质量双三氟甲烷磺酰亚胺锂

双三氟甲烷磺酰亚胺锂的物性数据。重庆质量双三氟甲烷磺酰亚胺锂

PDES-CPE的制备过程示意图。将四种固体粉末:丁二腈(SN)、双三氟甲烷磺酰亚胺锂(LiTFSI)、二氟草酸硼酸锂(LiDFOB)和一种合成的单体甲基丙烯酸(2-(((2-氧代-1,3-二氧戊烷基-4-基)甲氧基)甲酰胺基))-乙酯(CUMA)均匀混合得到熔融的前驱体,加入具有正极、负极、隔膜的电池中,在60 ℃充分聚合得到含有PDES-CPE的电池。通过截面扫描电镜图和能谱图看出,正极和电解质呈现出紧密的接触,原位聚合的电解质可以均匀渗透到工业水平的正极(70 μm,26 mg/cm2)中,有益于界面阻抗的降低和界面的离子传输。根据PDES-CPE聚合前后的1H核磁共振谱,通过聚合后的单体和残余单体所对应的峰的积分面积计算,得出PDES-CPE的聚合转化率高达99.8 %(图1c)。CUMA中的甲基丙烯酸酯结构在聚合时具有快速的链增长动力学性能,且其聚合物自由基中间体与SN或锂盐之间的链转移反应较少;另外,CUMA较短的链长使得其在链增长过程中反应活化能较低,决定了PDES-CPE的高聚合转化率。重庆质量双三氟甲烷磺酰亚胺锂

与双三氟甲烷磺酰亚胺锂相关的**
信息来源于互联网 本站不为信息真实性负责