双三氟甲烷磺酰亚胺锂基本参数
  • 产地
  • 上海
  • 品牌
  • 上海域伦
  • 型号
  • 齐全
  • 是否定制
双三氟甲烷磺酰亚胺锂企业商机

Borgel等研究了镍锰酸锂半电池(Li/LiNi0.5Mn1.5O4)在TFSI(双三氟甲烷磺酰亚胺)基离子液体中的性能,相比于常规电解液,电池不可逆容量**降低。但将这些离子液体应用在高倍率和低温环境时,其性能还需要进一步的优化。1mol/LLiNTf2-C4mpyrNTf2(双三氟甲烷磺酰亚胺锂/1-丁基-1-甲基吡咯烷鎓双三氟甲磺酰亚胺)电解液用于Li/LiNi0.5Mn1.5O4电池,与电解液[1mol/LLiPF6j(EC)∶j(DEC)=1∶2]相比,电池放电容量相当,但库仑效率有明显的提高,且离子液体的阻燃性、安全性较优。不足的地方是使用该离子液体后电池库仑效率*约95%,容量衰减较快,因此库仑效率还需提高,真正实现高效率、高容量保持率。为改善其不足,可将离子液体与常规溶剂作为共溶剂,提升锂离子电池在高电压下的性能。虽然离子液体可应用在高电压锂离子电池,但是其高的黏度、低的电导率导致电池循环和倍率性能降低;其次,其浸润性不好,致使与电极的相容性也较差;再者,离子液体熔点高,使得在低温下的性能下降。离子液体真正实现应用化还需更多的研究。双三氟甲烷磺酰亚胺锂是重要的含氟有机离子化合物,其应用在二次锂电池、超级电容器。现代化双三氟甲烷磺酰亚胺锂报价表

斯坦福大学崔屹教授课题组设计了一种防火、超轻的固态聚合物电解质(SSE)以提高锂电池的安全性。该聚合物固态电解质以多孔聚酰亚胺(PI)作为机械增强框架材料,添加阻燃剂(十溴二苯乙烷,DBDPE)和离子导电聚合物电解质(聚环氧乙烷/双三氟甲烷磺酰基锂,PEO/LiTFSI)。聚合物固态电解质由轻质有机材料制成,具有可调节的膜厚度(10–25 μm),与传统的隔膜/液体电解质相比,具有更高的能量密度。该聚合物框架PI/DBDPE具有良好的热稳定性,在350 ℃时也没有观察到化学成分与形貌的变化。多孔PI/DBDPE膜的杨氏模量为440 MPa,比PEO/LiTFSI膜的杨氏模量(0.1 MPa)高出近4个数量级,证明了其具有优异的机械强度。添加了离子导体PEO/LiTFSI之后,整个电解质表现出了非常好的防火性能。制成的Li/Li 对称电池循环了300小时不短路,LiFePO4/ Li半电池在60 °C下表现出高速率性能(在1 C下为131 mAh g-1)和循环性能(在C/2速率下300个循环)。此外,该固态聚合物电解质制成的软包电池在火焰测试下仍然可以工作,体现出优异的耐高温特性。河南口碑好的双三氟甲烷磺酰亚胺锂双三氟甲烷磺酰亚胺锂作为六氟磷酸锂的升级产品。

麻省理工学院发现电解质阴离子基团效应可将锂离子电池交换电流密度提升百倍据先进能源科技战略情报研究中心9月2日消息,麻省理工学院Yet-MingChiang教授研究团队发现电解质阴离子基团效应可将锂离子电池交换电流密度提升百倍。团队首先通过湿化学方法制备了锂钴氧复合电极(LiNi0.33Mn0.33Co0.33O2,NMC)复合块体电极,随后从块体电极分离出单个NMC电极颗粒,置于不同的电解质环境中,进行一系列的电化学性能测试。电化学阻抗谱和恒电位间隙滴定测试显示,相比六氟磷酸锂(LiPF6)电解质电池,采用双三氟甲烷磺酰亚胺锂(LiTFSI)离子传输效率更高,其交换电流密度大幅提升,且随充电电压增加而增大,最大值提升了100倍。这为设计开发高性能的锂电池电解质提供了重要科学理论参考。相关研究成果发表在《NatureEnergy》。

    锂金属电池是下一代相当有前景的高能量密度存储设备之一。然而,锂金属在循环过程中产生的枝晶可刺破隔膜,引起电池短路甚至。采用固态电解质代替易燃的液态电解质可从根本上解除锂金属电池的安全隐患。其中,聚合物固态电解质具有良好的柔性、优异的加工性和电解质-电极界面相容性。然而,聚合物电解质室温电导较低、机械强度较弱,限制了其广泛应用。目前,对聚合物电解质的研究多聚焦在提高其离子电导率。离子电导率由固态电解质的离子电导对电解质厚度和面积进行标准化处理计算得到。不同固态电解质的厚度相差较大,因此,即使电导率相近,厚度的差异导致了锂离子在固态电解质中迁移距离的不同,直接影响了全固态电池电化学性能和能量密度。近期,华中科技大学李真教授和黄云辉教授研究团队报道了一种可规模化制备的超薄柔性聚合物电解质。他们利用简单的溶剂挥发法将聚环氧乙烷(PEO)/双三氟甲烷磺酰亚胺锂(LiTFSI)聚合物电解质填充至聚乙烯隔膜的孔道内,制备了厚度*为μm的超薄复合聚合物电解质。作者采用价廉易得、高力学性能、高孔隙率的电池隔膜作为支撑体,保证了超薄固态电解质的力学强度、防止全固态电池在组装、使用过程中发生内短路。双三氟甲烷磺酰亚胺锂用于通过对应的三氟甲基磺酸盐的阴离子置换反应制备手性咪唑鎓盐。

中国科学院金属研究所李峰研究员和孙振华研究员等,将原位固化的策略引入到锂硫电池中,在电解液中加入2, 5-二氯-1, 4-苯醌(DCBQ),使得锂硫电池电化学反应过程中生成的多硫离子可以与DCBQ发生亲核取代反应,原位地生成不易溶于醚类电解液的固相有机硫聚合物,从而实现抑制穿梭效应的目的。通过实验表征和理论计算结合,发现有机硫聚合物中的多硫化物可以被共价键合作用限制,该固态的有机硫聚合物能够阻止后续多硫化物的迁移,使活性物质保持在正极中,增加了循环稳定性和活性物质利用率。DCBQ上的醌羰基官能团可以加快锂离子的迁移速率,促进电化学反应的动力学过程,提升电池的倍率性能。在电解液中添加了DCBQ的锂硫电池,在2C电流密度下放电比容量高达622 mAh g-1,是不含添加剂的电池容量的3.5倍,在1 C倍率下充放电循环100圈,电池容量保持率为92%。锂硫电池的醚类电解液中(1 M双三氟甲烷磺酰亚胺锂(LiTFSI),0.2 M硝酸锂,溶解于1,3二氧戊环(DOL)和乙二醇二甲醚(DME)的体积比为1:1的混合溶液)添加DCBQ,在***放电产生多硫化物时,DCBQ上的氯可与多硫离子的孤对电子产生作用,发生取代反应进而缩聚生成固相的有机硫聚合物。双三氟甲烷磺酰亚胺锂合成方法。山东双三氟甲烷磺酰亚胺锂二手价格

双三氟甲烷磺酰亚胺锂的化学性质。现代化双三氟甲烷磺酰亚胺锂报价表

市发改委主动服务,积极为企业解读产业政策,想企业所想,急企业所急,帮助企业探寻发展路径,对标国家出台的产业政策,谋划发展项目。一是推动医药企业智能化发展。引导企业创新发展理念打造”智能制造+绿色制造+共享平台”新商业模式,构建‘共享智能工厂”新生态。二是推动装备制造**化发展。发展黑土地保护性耕作、秸秆还田收贮、收割机、深松机、整地机等农业机械,以及设施农业、畜禽屠宰等农牧及加工机械,打造农机装备产业链,发展创新平台,研发**装备。三是推动化工新材料创新发展。发展氯磺酰异氰酸酯锂电池电解液新材料,推进双氟磺酰亚胺锂(LiFSI)及双三氟甲烷磺酰亚胺锂(LiTFSI)国产化,提升国际竞争力。四是推动冶金建材业绿色化发展。重视绿色制造,推进产品全生命周期的绿色管理进程,推进金钢钢铁低碳非高炉炼铁改造,发展绿色低碳冶金建材产业。现代化双三氟甲烷磺酰亚胺锂报价表

与双三氟甲烷磺酰亚胺锂相关的**
信息来源于互联网 本站不为信息真实性负责