三氟甲基磺酸锂基本参数
  • 产地
  • 上海
  • 品牌
  • 上海域伦
  • 型号
  • 齐全
  • 是否定制
三氟甲基磺酸锂企业商机

CF3SO3Li(三氟甲磺酸锂)在热稳定性、吸水分解性、循环性能等方面都高于LiPF6,尤其是CF3SO3li应用于固体电解质时,由于其稳定的阴离子会使电解质和阴极材料界面间的钝化层结构和组成得到改善,有利于电解质、钝化膜和电机的稳定。因此,CF3SO3Li的生产和应用必将成为研究的热点。CF3SO3Li应用于固体电解质时,由于其稳定的阴离子会使电解质与负极材料界面间的钝化层结构和组成得到改善,有力于电解质,钝化膜,电极的稳定。国外虽然已经合成出了CF3SO3Li,并有试剂出售,但其合成研究都停留在实验室合成阶段,国内对电池材料CF3SO3Li的合成研究未见报道。三氟甲基磺酸锂的用途:锂电池电解质、医药、化工等行业的中间体。机械三氟甲基磺酸锂售价

为研究钠离子对Li-O2电池的影响,研究者使用了相同的电池材料,但在四甘醇二甲基二甲基醚(TEGDME)和1 M三氟甲磺酸锂溶液中引入了不同浓度的三氟甲磺酸钠。图a为添加有钠离子的三种不同电解质的Li-O2电池的电压曲线。在1 M Li+电解液中,放电显示出一个约2.7 V的平台,而充电曲线从3.6 V处的平台开始,迅速超过4.0 V直至充电结束。使用0.1 M Na+时,充电电压在3.8 V处显示稳定的平台;对于具有1 M Li+和0.5 M Na+的电解质,充电电压进一步降低至3.4 V,表现出小于0.5 V的低充电过电势。类似的趋势也可在另一组电解质中观察到。Na+的添加会降低充电电位,其中0.4 M Li+和0.6 M Na+的比较低充电电位为3.4 V,这表明析氧反应(OER)中的快速动力学。深度放电/充电曲线,在没有Na+,放电容量为2.08 mAh cm-2;具有1 M Li+和0.1 M Na+,放电容量为7.2 mAh cm-2,具有1 M Li+和0.5 M Na+的电池的容量为5.9 mAh cm-2。具有1 M Li+和0.5 M Na+的Li-O2电池在30周内都能保持低的充电电压。30圈循环后,充电电位增加,这可能是由于副产物在电极上的积累。电机三氟甲基磺酸锂定制价格三氟甲磺酸的制备方法。

锂空气电池是新型绿色能源技术,由于电池阴极来源于空气中的氧气,不需要存储于电池中,因而被誉为"会呼吸的电池"。该体系在能量密度方面有杰出的表现,已成为相当有潜力的发展方向之一。目前,该方向的研究着重于提升电池比容量,二次电池的开发以及电池的放电机理三个方面。虽然一次电池的开发中电池比容量有了大幅提升,但仍有上升的空间。不同的电解质体系,电池的充放电机理存在相应的差异,电池的放电过程也发生着相应的改变,所以目前仍无一个公认的电池充放电机理。通过遴选电解质配方,电极组分,隔膜,空气过滤膜,配合相应的空气电池结构设计,开发了一种高比容量的锂空气电池。在工艺研究的基础上,通过对放电产物的检测,电池放电过程电极形貌变化情况与电化学阻抗谱的观察,讨论了该电池体系在空气中的放电机理。通过对电池结构的设计,电解质组分和电池结构性材料的遴选以及空气电极的结构设计,确定如下工艺条件:电解质为三氟甲磺酸锂(LiOTf ,溶剂为碳酸丙烯脂(PC)与碳酸乙烯酯(EC)等体积比混合物(VPC/VEC=1),电池隔膜为玻璃纤维滤纸膜,空气过滤膜为聚二甲基硅氧烷硅油(PDMS)膜。

三氟甲磺酸也是一种很强的Lewis酸,相应的三氟甲磺酰基具有很强的吸电子性能,当它和酰基化试剂结合时,生成活化的酰基化中间体,进而比较容易发生催化Friede1-Crafts酰基化反应。例如,三氟甲磺酸的三甲基硅酯可以催化分子内的Friede1-Crafts酰基化反应,生成环状酮类化合物(式3)。还有其它一些三氟甲磺酸盐也具有催化Friede1-Crafts烷基化和Friede1-Crafts酰基化反应,例如,4-苄基氨甲酰苯基苯胺三氟甲磺酸盐[5](BCPPAT)和Yb(0Tf)3是高效Friedel-Crafts苄基化和环己基化反应的催化剂,三氟甲磺酸作为**强的有机酸之一,它具有很强的给质子能力,可以使很多基团发生离子化。例如:它可以离子化叠氮化合物,使之更容易发生Diels-Alder反应(式4)。三氟甲基磺酸锂危险代码:Xi  危险等级:36/37/38  安全等级:26。

Yang等使用分子动力学模拟图研究了当电解液为21 mol/L LiTFSI+7 mol/L 三氟甲磺酸锂(LiOTF),电压为2.5 V(vs Li)时,LiTFSI和LiOTF在石墨电极表面亥姆霍兹内层占主导地位,水几乎被排除在与石墨表面的直接接触之外,而当电压为0.5 V时,由于对负离子的斥力增大,部分水分子会到达石墨电极表面发生析氢反应,这样会破坏电极表面的SEI层从而影响负极材料的稳定性。为此,他们添加了1,1,2,2-四氟-2',2',2'-三氟乙基醚(HFE)作为一层“负极保护层”,该LiTFSI-HFE的强疏水性可以有效地阻止水分子在负极表面发生析氢反应(图8)。另外,在循环的过程中该电解液添加剂可以参与形成富含LiF或有机的C-F物质的SEI膜,提高电池的循环性能。为了证明由于LiTFSI-HFE的加入而形成新的中间相可以使石墨及锂金属负极在“盐包水”电解液中稳定存在,还使用了LiVPO4F正极材料和不同的负极材料组装了全电池。图9为所组装全电池在室温下的电化学性能,所有这些水系LIBs在4.0 V或以上的稳压状态下可循环50圈,提供的容量接近于相应的理论值。采用三氟甲磺酸锂(LiCF3SO3)取代LiAsF6,**提高了以环醚和酯为溶剂的电解液的初始热分解温度。山东进口三氟甲基磺酸锂

CF3SO3Li (三氟甲磺酸锂)在热稳定性、吸水分解性、 循环性能等方面都高于LiPF6。机械三氟甲基磺酸锂售价

采用六氯环三磷腈高温开环聚合方法制备聚二氯磷腈,然后采用醇钠法制备聚二(二乙二醇单甲醚)磷腈(MEEP),获得了较佳的合成工艺,采用FT-IR、31P-NMR、13C-NMR质谱对其进行结构表征和分析。采用自制的MEEP与三氟甲基磺酸锂(LiCF_3SO_3)盐进行复配,制备了新型锂离子电池用聚合物固体电解质,对其热稳定性、导电性进行了测试。结果表明,其开始分解温度在200℃以上,室温电导率达到了1.187×10~(-4)S/cm(25℃),具有较佳的导电性和热稳定性。机械三氟甲基磺酸锂售价

与三氟甲基磺酸锂相关的文章
与三氟甲基磺酸锂相关的**
信息来源于互联网 本站不为信息真实性负责