技术在线2012年01月31日报道,日本住友电木开发出了用于高输出用途锂离子充电电池负极的硬碳材料(见图2)。该硬碳属于耐热性和阻燃性都很高的苯酚树脂类材料,已经被HEV动力锂电池厂商所采用,将从2012年春季开始在住友电木的子公司秋田住友电木量产。住友电木此次开发的硬碳的晶粒特点是:粒径为数μm,结晶间距离约为4埃(4×10-10m),大于石墨的约3.4埃。凝固后作为负极使用时,便于锂离子进出,在-20℃的低温环境下与石墨相比可将单元电阻降低20~30%。之前,我们并没有听说住友电木在开发负极材料市场,这是一个野心勃勃的新进者。
与石墨相比,硬炭具有更大的层间距和更丰富的孔隙结构。官方硬碳
硬炭类负极材料由于其特殊的储锂机理以及优异的安全性、倍率特性和低温性能而备受关注,特别是针对车用动力锂离子电池领域,硬炭材料有其独特的优势。硬炭的微孔结构有利于锂离子的运动,可以快出快充,对功率型应用十分有利。锂离子电池负极材料在很多的程度上决定了电池的安全性、循环寿命和能量密度,因此新型硬炭负极材料的开发将会给锂离子电池材料体系的选择提供了更多的组合。
硬炭是指难石墨化碳,是一类以高分子聚合物为前驱体经高温热解得到的碳材料,一般是在1000℃左右热解树脂制备得到,这类碳在2500℃以上的高温也难以石墨化。硬炭可逆比容量比石墨高,一般为500-700mAh/g。常见的硬炭有树脂碳(如酚醛树脂和聚糠醇等)、有机聚合物热解碳(如PFA、PVC、PVDF和PAN等)和炭黑等。与石墨相比,硬炭具有更大的层间距和更丰富的孔隙结构(图1),具有较好的低温倍率性能和优异的电解液兼容性,使其成为动力电池相当有潜力的负极材料。硬炭良好的倍率性能使得它在电动车以及混合电动车上面受到了关注和小范围的使用。
宁波硬碳供应高功率、低温性能优越,性价比高,可采用水性粘结剂。
硬碳具有高容量,优异的倍率特性和良好的低温性能,成为电动车电池相当有潜力的负极材料.综述了硬碳材料的研究和应用进展,指出任意堆积的石墨烯层结构决定了硬碳材料的性能;原材料和制备工艺会影响硬碳材料的规模化生产质量和应用,随着电动汽车产业的兴起和硬碳材料应用的增长,其相关应用研究将成为热点。
为了适应新能源车的发展,快速充电和大倍率放电的锂离子动力电池成为研究和开发的热点,其中电池正负极活性物质材料的选择尤为重要。目前,锂离子电池的负极材料主要是石墨,原因在于其导电性好,可逆比容量可达300mAVg以上,但石墨材料的结构稳定性差,与电解液的相容性差且由于其有序层状结构中的扩散速度慢,导致该材料不能大倍率地充放电,因而研究人员开始关注硬碳材料的开发。
硬碳是难以石墨化的碳,为高分子聚合物的热解碳,它具有相互交错的层状结构可以从各个角度嵌入和脱出,**提高了充放电的速度,其低温性能也较石墨材料有明显的改善.而且硬碳材料往往具有高的可逆比容量,因此硬碳材料更适用于汽车动力电池的负极材料。
锂电池包电极材料使用多元化,将不断更新换代
锂电池包电极材料使用多元化,将不断更新换代。锂电池包随着社会的不断发展,需求量不断增大,竞争也越来越激烈,锂电池包电极材料使用多元化方面已经由单一化向多元化的方向转变。
碳负极材料:
此种类型的材料无论是能量密度、循环能力,还是成本投入等方面,其都处于表现均衡的负极材料,同时也是促进锂电池包诞生的主要材料,碳材料可以被划分为两大类别,即石墨化碳材料以及硬碳。
磷酸亚铁锂
磷酸亚铁锂在充电和放电方面具有良好的循环性能以及热稳定性,在使用过程中具有较强的安全保障,并且该材料绿色环保,不会对环境造成严重的损害,同时价格也较为低廉,被我国电池工业认为是进行大型电池模块生产的比较好材料。目前的主要应用领域有:电动汽车、便携式移动充电电源等,在未来发展中将会朝着储能电源、便携式电源方向深入发展。 硬碳类负极材料由于其特殊的储锂机理以及优异的安全性、倍率特性和低温性能而备受关注。
无机材料包覆硬碳改性
碳负极材料的改性是提高锂离子电池性能的重要途径之一,而改性的方法有多种。其中向碳材料中掺杂非金属元素B、Si、P、N、S等均可使碳材料的嵌锂特性发生明显改变。有关磷的掺杂,Sony公司「侦曾报道向PFA(聚糠醇树脂)中添加磷化物,使可逆容量得到***提高;吴宇平等也进行了H3PO4掺入PAN(聚丙烯月青)的研究。上述研究还通过XRD.XPS等分析方法对磷掺杂后材料的结构进行了初步分析,但对磷掺杂改性机理还未给出完美的解释。尹鸽平等「的采用一步法制备热固性酚醛树脂,通过充放电性能研究,确定了合适的碳化温度,进而制备出了不同含磷量的酚醛树脂热解碳,研究了磷对硬碳结构及嵌锂性能的影响。结果表明:碳材料的有序化程度提高,磷主要以共价键与碳环相连,只有小部分以氧化态存在。电极的可逆容量和充放电效率明显提高,其中含磷0.20(H3PO4占树脂的质量分数)的碳***可逆容量为427.7mAh/g,充放电效率为50.75%。由循环伏安曲线可知,其不可逆容量损失主要由发生在0.9V左右的溶剂分解和成膜反应引起。
无记忆效应等众多优点。台州原装硬碳
硬碳材料在机械强度和结构稳定性方面展现出极大的优势,但是本征性质较脆且易碎。官方硬碳
降低蔗糖热裂解前除水温度的方法
除水工艺是指在150〜180。时对粗糖加热除水的工艺。这一预处理过程除去了糖中绝大多数水,并使后续的裂解产率提高,产品提纯方便。BuielE等「边发现,在175'C、155"C、140C分别对粗糖加热处理后于1050'C裂解后制得的硬碳电极其不可逆容量分别约为50mAh/g、40mAh/g和30mAh/go说明降低蔗糖热裂解前的除水温度能不同程度的降低不可逆容量。
CVD法包翟硬碳改性
CVD法即化学气相沉淀法。EdwardBuiel等「⑵提出在高于700C的温度的乙烯气氛中,在硬碳表面沉积碳可以改良硬碳表面,使不可逆容量由超过150tnAh/g下降到不足70mAh/go电化学测试显示,在乙烯气氛中热裂解后制得的硬碳负极,其可逆容量与真空气氛中裂解所得的硬碳几乎相等(516mAh/g:511mAh/g)oIsaevI等取也采取了CVD法对硬碳进行了改性。所不同的是在翻气(80ml/min)与甲苯的混合气中,以1000°C裂解温度对硬碳进行了改性。发现随着实验的进行,微孔已部分被CVD法沉降的碳关闭,只有锂离子可以循环嵌入微孔中。 官方硬碳
上海科比斯实业有限公司办公设施齐全,办公环境优越,为员工打造良好的办公环境。专业的团队大多数员工都有多年工作经验,熟悉行业专业知识技能,致力于发展可乐丽代理的品牌。公司以用心服务为重点价值,希望通过我们的专业水平和不懈努力,将化工产品、化工原材料、锂电池负极材料、硬碳、水性粘结剂、LCP薄膜、LCP天线、PA9T、亚克力复合板材、活性炭、化工产品、化工原材料、锂电池负极材料、硬碳、水性粘结剂、LCP薄膜、LCP天线、PA9T、亚克力复合板材、活性炭等化工产品代理等业务进行到底。自公司成立以来,一直秉承“以质量求生存,以信誉求发展”的经营理念,始终坚持以客户的需求和满意为重点,为客户提供良好的硬碳,LCP薄膜,PA9T,亚克力复合板,从而使公司不断发展壮大。