双三氟甲烷磺酰亚胺锂基本参数
  • 产地
  • 上海
  • 品牌
  • 上海域伦
  • 型号
  • 齐全
  • 是否定制
双三氟甲烷磺酰亚胺锂企业商机

在高浓度电解液环境中,电极/电解液界面膜组成主要源于锂盐阴离子的氧化或还原分解,生成氟化锂(LiF),而富含LiF的界面膜相对稳定,从而可以有效减少界面发生的副反应。如在石墨负极表面,少许溶剂还原后形成不溶性的SEI组分,如Li2CO3和部分可溶的半碳酸盐和聚合物,锂盐阴离子还原的产物是典型的无机化合物,如LiF和Li2O,它们沉淀在电极表面形成-层无机-有机复合膜。该界面膜薄而致密,具有较强的机械稳定性,从而进一步改善电化学性能。且阴离子的结构也能影响界面的化学组成。Wang等研究表明在氟磺酰亚胺锂-双三氟甲烷磺酰亚胺锂(LiFSI+LiTFSI)中,SEI膜中LiF含量随LiFSI浓度增大而增加,这表明FSI-阴离子优先于TFSI在石墨负极表面发生分解,产生富含LiF和更稳定的SEI膜,从而进一步稳定电极/电解液的界面,提升库仑效率和循环稳定性。双三氟甲烷磺酰亚胺锂作为六氟磷酸锂的升级产品,可改善锂电池循环性能、高温性能和存储性能。西藏定制双三氟甲烷磺酰亚胺锂

由来自美国马里兰大学王春生教授和美国陆军研究实验室徐康博士两位华人学者领导的研究小组尝试了新的思路。他们将一种锂的离子化合物——双三氟甲烷磺酰亚胺锂以极高的浓度溶于水,得到了一种独特的“盐水”。由于溶液中锂盐的体积和质量分数都高于水,这种“盐水”实际上应该视为水溶于锂盐中形成的溶液。这种溶液的导电能力与常规有机溶剂电解质相当,而可燃性要**低于后者。在电池使用过程中,溶液中的锂盐会先于水发生电解,电解产物会沉积在电极上形成保护层,防止水的电解的发生,而导电能力不会受到影响。类似的保护层在使用非水电解质的电池中很常见,但因为基于水溶液的电解质电解产物是氢气和氧气,通常很难形成固态保护层,而这项新的研究巧妙地解决了这个问题。宁夏双三氟甲烷磺酰亚胺锂材料双三氟甲烷磺酰亚胺锂的化学性质。

中国科学院金属研究所李峰研究员和孙振华研究员等,将原位固化的策略引入到锂硫电池中,在电解液中加入2, 5-二氯-1, 4-苯醌(DCBQ),使得锂硫电池电化学反应过程中生成的多硫离子可以与DCBQ发生亲核取代反应,原位地生成不易溶于醚类电解液的固相有机硫聚合物,从而实现抑制穿梭效应的目的。通过实验表征和理论计算结合,发现有机硫聚合物中的多硫化物可以被共价键合作用限制,该固态的有机硫聚合物能够阻止后续多硫化物的迁移,使活性物质保持在正极中,增加了循环稳定性和活性物质利用率。DCBQ上的醌羰基官能团可以加快锂离子的迁移速率,促进电化学反应的动力学过程,提升电池的倍率性能。在电解液中添加了DCBQ的锂硫电池,在2C电流密度下放电比容量高达622 mAh g-1,是不含添加剂的电池容量的3.5倍,在1 C倍率下充放电循环100圈,电池容量保持率为92%。锂硫电池的醚类电解液中(1 M双三氟甲烷磺酰亚胺锂(LiTFSI),0.2 M硝酸锂,溶解于1,3二氧戊环(DOL)和乙二醇二甲醚(DME)的体积比为1:1的混合溶液)添加DCBQ,在***放电产生多硫化物时,DCBQ上的氯可与多硫离子的孤对电子产生作用,发生取代反应进而缩聚生成固相的有机硫聚合物。

1994年,Dahn等报道了***个水系锂离子电池,该体系分别使用LiMn2O4和VO2作为正、负极,以5 mol/L LiNO3和0.001 mol/L LiOH作为电解液,在1.5 V的平均电压下循环100次后容量保持率达到80%。然而,水的电化学窗口较窄,限制了电极材料的选择范围,导致了传统水系锂离子电池的能量密度很低。为了进一步提高能量密度,2015年,王春生等报道了宽电位“water in salt”电解液,负极侧双三氟甲基磺酰亚胺(TFSI)的还原导致的钝化作用和正极侧Li+的溶剂化以及TFSI离子的作用,使电化学窗口扩大至3 V,如图5所示。使用该电解液组装了2.3 V的水系锂离子电池并循环了1000多次,无论在较低(0.15 C)、还是较高(4.5 C)倍率下放电和充电库仑效率均接近100%。在此研究基础上,该课题组又使用三(三甲基甲硅烷基)硼酸酯(TMSB)作为添加剂,通过TMSB的电化学氧化形成阴极电解质界面(CEI),使LiCoO2在更高的截止电压下稳定充电/放电,并具有170 mA·h/g的高容量。当与Mo6S8阳极配对时电压为2.5 V,能量密度达到120 W·h/kg(1000个循环),每循环0.013%的极低容量衰减率。随后,又有更宽电位的“water in bisalt”电解液被报道,拓宽了电极材料选择的范围。双三氟甲磺酰亚胺锂盐和DIOX+EC+VC溶剂配成的电解液组装成的锂离子电池。

酯类和醚类是电池中**常用的两类有机电解液溶剂,而常用的盐有六氟磷酸盐,高氯酸盐,三氟甲基磺酸盐,双三氟甲烷磺酰亚胺盐等。在对硬碳的报道中,酯类电解液是**常用的,但醚类电解液可以实现更好的倍率性能和首效。电解液溶剂和盐的种类,以及电解液的浓度,可以影响SEI膜的组成,从而影响硬碳负极的循环性能。通过在电解液中加入少量的添加剂,可以***的提高硬碳负极的性能。比如,添加2-5%的氟代碳酸乙烯酯(Fluoroethylene Carbonate,FEC)可以在硬碳负极表面生成稳定的SEI膜,而加入碳酸亚乙烯酯(Vinylene Carbonate,VC)则可以提高SEI膜的热稳定性,从而提高电池的高温性能。也有一些基于磷酸三甲酯(trimethyl phosphate,TMP)的不可燃电解液,可以提高电池的安全性,因而也非常值得关注。硬碳负极的材料和电解液优化策略。白色粉末。熔点234-238 °C(lit.),密度1,334 g/cm3,溶解度 H2O: 10 mg/mL, clear, colorless。江苏双三氟甲烷磺酰亚胺锂应用

双三氟甲烷磺酰亚胺锂可用于制备离子液体。西藏定制双三氟甲烷磺酰亚胺锂

麻省理工学院发现电解质阴离子基团效应可将锂离子电池交换电流密度提升百倍据先进能源科技战略情报研究中心9月2日消息,麻省理工学院Yet-MingChiang教授研究团队发现电解质阴离子基团效应可将锂离子电池交换电流密度提升百倍。团队首先通过湿化学方法制备了锂钴氧复合电极(LiNi0.33Mn0.33Co0.33O2,NMC)复合块体电极,随后从块体电极分离出单个NMC电极颗粒,置于不同的电解质环境中,进行一系列的电化学性能测试。电化学阻抗谱和恒电位间隙滴定测试显示,相比六氟磷酸锂(LiPF6)电解质电池,采用双三氟甲烷磺酰亚胺锂(LiTFSI)离子传输效率更高,其交换电流密度大幅提升,且随充电电压增加而增大,最大值提升了100倍。这为设计开发高性能的锂电池电解质提供了重要科学理论参考。相关研究成果发表在《NatureEnergy》。西藏定制双三氟甲烷磺酰亚胺锂

上海域伦实业有限公司致力于化工,是一家生产型的公司。公司业务涵盖碳酸锂,氢氧化锂,硫酸锂,氟化锂等,价格合理,品质有保证。公司将不断增强企业重点竞争力,努力学习行业知识,遵守行业规范,植根于化工行业的发展。域伦秉承“客户为尊、服务为荣、创意为先、技术为实”的经营理念,全力打造公司的重点竞争力。

与双三氟甲烷磺酰亚胺锂相关的**
信息来源于互联网 本站不为信息真实性负责