CTFA作为含环状缩醛结构的UV光固化单体,关键竞争力在于其优异的活性稀释能力与低粘度特性——25℃环境下粘度只10-25cps,与高粘度树脂复配时,可将体系粘度降低60%以上,且不会破坏各组分的相容性,有效提升涂布或灌注工艺的流畅性。而EOEOEA的分子结构中,乙氧基链段赋予其良好的极性调节能力,与CTFA复配时,既能通过乙氧基链段增强对颜料、填料的润湿分散性,避免体系出现沉淀或团聚;又能借助自身柔性链段,中和CTFA环状结构带来的刚性,使固化物具备180°对折无开裂的柔韧性。此外,两者复配后仍保持低气味、低皮肤刺激性的优势,固化收缩率可控制在5%以内,兼顾工艺适配性、使用安全性与固化物力学性能。UV光固化单体可促进固化体系快速交联,缩短整体固化周期。高性能UV光固化单体批发价

DCPEA与LA的组合,打造了“刚柔并济+耐化学腐蚀”的特色体系。DCPEA含双环戊烯基结构,固化膜硬度达3H,耐丙同浸泡24小时无溶胀,热变形温度>110℃,展现出优异的结构稳定性;但单独使用时柔韧性不足,90°弯折易开裂。LA则以脂肪族长链提供增塑效果,其Tg值低至-65℃,能明显提升固化膜的断裂伸长率。两者复配时,DCPEA的刚性环与LA的柔性链形成互补,再加入PHEA调节粘度(体系粘度<20cps),固化膜既保持高硬度,又能实现180°对折无裂纹。且体系不含苯环,长期暴露于紫外线后黄变指数<1,适配户外耐候涂层需求。杭州高性价比UV光固化单体UV光固化单体可提升固化体系的施工操作性,降低施工难度。

TCDDM与DCPA的组合精确攻克“高刚性与耐热性平衡”难题,是高温环境下结构件固化的理想选择。TCDDM的三环癸烷二甲醇结构具备独特的刚性增强了效应,实验显示每增加1摩尔百分比的TCDDM,材料Tg值可提升0.4℃,且能同步提高弹性模量与透光率。DCPA则以双环戊烯基结构强化交联网络,其固化物热变形温度可达120℃以上,耐化学腐蚀性优异,能抵御乙醇等常见溶剂侵蚀。两者复配时,TCDDM的刚性骨架为DCPA的交联结构提供支撑,使固化物拉伸强度突破30MPa,同时Tg值较单独使用DCPA提升10-15℃,且低收缩特性确保精密结构件尺寸精度。这种组合尤其适配耐高温电子外壳、工业模具等场景,兼顾结构稳定性与耐热可靠性。
TCDNA与CTFA的组合以“快速固化与低粘度”为关键,适配UV喷墨等精密涂布场景。TCDNA作为三环癸烷系列多官能团单体,分子中多活性位点使其固化速率较普通双官能单体提升40%以上,能大幅缩短喷墨后的干燥等待时间,提升印刷效率。但多官能团单体往往粘度较高,而CTFA的25℃粘度只10-25cps,是理想的活性稀释剂,可将TCDNA体系粘度降至涂布适配范围,且不影响固化速率。更重要的是,两者均不含苯环结构,固化后膜层耐黄变性能优异,长期暴露于紫外线仍保持透明鲜亮。同时,CTFA对塑胶、金属的良好附着性,能增强TCDNA涂层的基材贴合度,避免喷墨图案出现脱层。这种组合兼顾高效固化、工艺适配性与耐候性,是高级UV喷墨油墨的选择方案。UV光固化单体能提升固化物的耐水性,减少水分对涂层的破坏影响。

TMCHA与THFEOA搭配使用的UV光固化单体组合,为柔性PCB的覆盖膜提供了“高附着+可弯曲”的适配方案。柔性PCB需频繁弯折(如折叠屏手机排线),覆盖膜既要紧密贴合基材防止其脱落,又要具备一定柔韧性避免弯折时开裂,传统单体要么附着力不足,要么刚性过强易断裂。TMCHA凭借高附着特性,能确保覆盖膜与柔性PCB的铜箔、基材紧密结合,低收缩率避免固化后出现剥离;THFEOA的乙氧基链段则赋予覆盖膜适度柔韧性,使其可随PCB反复弯折而不产生裂纹,同时低刺激性特性也优化了生产车间的操作环境,适配柔性电子对“耐用性+可弯折”的关键需求。UV光固化单体有助于优化固化物的色彩还原度,让颜色更贴合设计。高性能UV光固化单体批发价
UV光固化单体能增强固化物的整体稳定性,长期使用不易性能衰减。高性能UV光固化单体批发价
华锦达的TMCHA与TBCHA在分子结构设计上高度契合脂环族单体的关键优势,均以环己烷为骨架,搭配高反应活性的丙烯酸酯基团。这种结构不只彻底规避了含苯环单体(如传统PHEA)易黄变的缺陷——因分子中只含稳定的C-C单键与C-H键,长期暴露于紫外线或氧气环境中,仍能保持优异的颜色稳定性;还通过环己烷上的烃基链与基材表面形成强范德华力,明显提升单体对各类基材的附着牢度,且低收缩特性可减少固化过程中的内应力,避免涂层开裂。而TCDDM作为三环癸烷二甲醇衍生单体,其独特的三元环结构赋予分子更高刚性,与TMCHA、TBCHA复配时,无需增加体系粘度,即可将固化物的耐热变形温度提升15%-20%,同时凭借低毒、无刺激性气味的特性,进一步优化配方的环保表现,满足严苛的安全与性能双重需求。高性能UV光固化单体批发价