阴离子交换膜电解水技术(AEM):能够生产低成本的氢气,需突破关键材料技术限制。电解槽结构类似于PEM电解槽,主要由阴离子交换膜、过渡金属催化电极极板、气体扩散层和垫片等组成,常使用纯水或低浓度碱溶液作为电解质。阴离子交换膜可以传导氢氧根离子,并阻隔气体和电子直接在电极间传递。AEM电解水技术工作原理为,水从阳极过阴离子交换膜到阴极,接受电子产生氢气和氢氧根离子,氢氧根离子穿过阴离子交换膜到阳极,释放电子生成氧气。氢氧根穿过阴离子交换膜回到阳极并放出电子产生氧气,氧气随后通过气体扩散层与电解液一起流出。AEM电解水技术使用廉价的非贵金属催化剂和碳氢膜,具有成本低、电流密度较大等,并且可以与可再生能源耦合。目前AEM技术还处于研发阶段,发展程度将取决于催化剂、聚合物膜、膜电极等关键材料技术的突破情况。根据天然气参加反应的不同,可以分为传统水蒸气重整制氢,部分氧化反应制氢,自热重整制氢三种制氢工艺。福建自热式天然气制氢设备
天然气部分氧化制氢。天然气催化部分氧化制合成气,相比传统的蒸汽重整方法比,该过程能耗低,采用极其廉价的耐火材料堆砌反应器但天然气催化部分氧化制氢因大量纯氧而增加了昂贵的空分装置制氧成本。采用高温无机陶瓷透氧膜作为天然气催化部分氧化的反应器,将廉价制氧与天然气催化部分氧化制氨结合同时进行。天然气制氢工艺流程主要包括净化系统与转化系统和提纯系统。净化系统主要包括对原料气的烯烃、含硫进行净化,原因是转化催化剂的敏感。转化系统主要是以净化气、蒸汽在转化催化剂的作用下,转化成氢气、CO/CO2,然后经过以Fe3O4为催化剂使得CO转化成C02和氢气,经过净化系统,得到纯度较高的氢气。天然气制氢技术特点:(1)技术成熟,运行安全可靠。(2)操作简单,自动化程度高。(3)运行成本低廉,回收期短。(4)低氮排放技术,满足环境保护要求。(5)优化圆筒炉结构,结构简单,可靠性高。(6)PSA解吸气全回烧,降低燃料消耗,减少废气排放。(7)装置设备高度集成化,实现撬块化,占地小,工期短。 江西自热式天然气制氢设备天然气制氢设备是一种高效、环保的氢气生产方式,可以利用天然气作为原料,通过化学反应将其转化为氢气。
煤制气装置:煤制氢装置的生产过程为通过将煤浆和纯氢,经气化、净化单元后生成纯度达到、酸性气。从目前已投产的煤气化装置运行情况来看,气流床气化技术的工业化发展速度快,其中以湿法进料气化技术更为成熟。氢气市场应用领域广阔,应用于化工、冶金、电力、电子等行业,用作保护气体、还原气体、原料气体电池燃料。其次,氢的热值高,反应速度快,获得途径多,储存形式多样。由于其经济性、机动性、环境友好性,因此扩大氢生产资源、开发新的制氢工艺以及改进现有制氢工艺,受到人们的普遍关注。制氢的原料包括:煤炭、水、烃类、氨气、硫化氢、有机废水、醇类。煤炭制氢成本低且可大规模制氢,但制氢工艺流程较长,操作环境差。以水为原料制氢方法包括:太阳能高温电解水工艺、核热高温电解水工艺、电流循环制氢工艺、光催化分解水技术。分解硫化氢、氨气制氢方法主要包括:高温热解法、光催化法和等离子化学离解法。
天然气高温裂解制氢是天然气经高温催化分解为氢和碳该过程。由于不产生二氧化碳被认为是连接化石燃料和可再生能源之间的过渡工艺过程。天然气自热重整制氢。该工艺同重整工艺相比,变外供热为自供热,反应热量利用较为合理,原理是在反应器中耦合了放热的天然气反应和强吸热的天然气水蒸汽重整反应反应体系本身可实现自供热。另外,由于自热重整反应器中强放热反应和强吸热反应分步进行,因此反应器仍需耐高温的不修锈钢管做反应器这就使得天然气自热重整反应过程具有装置成本高,生产能力低等缺点。天然气制氢的副产品有从氯碱工业副产气、煤化工焦炉煤气、合成氨产生的尾气。绝热条件下,天然气制氢,这种天然气制氢方式更适用于小规模的制取氢。天然气绝热转化制氢将空气作为氧气来源,同时利用含氧分布器可以解决催化剂床层热点问题和能量的分配,随着床层热点的降低,催化材料的反应稳定性也得到较大的提高。天然气绝热转化制氢工艺流程简单、操作方便。 天然气制氢设备的生产过程中,需要注意对催化剂的选择和使用,对反应条件的控制,以确保氢气的产量和质量。
除了作为化工原料(如石油炼化、合成氨、合成甲醇)和工业工艺气体(如钢铁、半导体行业还原剂)等传统使用方式外,绿氢还可以作为能源、燃料来使用。氢燃料电池是目前被看好的氢能利用路线。氢燃料电池汽车具备零排放、零污染、无噪声、补充燃料快、续航能力强等优势。2022年北京冬奥会期间,超过1000辆氢能源汽车使用,并配备了30多个加氢站,这是迄今为止氢燃料电池汽车在全球规模的集中示范运营。在新技术加持下,氢能交通工具可以实现风、光、水到氢再到水的“无碳物质闭环”,构成绿色发展的一次次清洁能量循环。比如氢能源市域列车,以每天500公里里程计,每年大约可减少10余吨二氧化碳排放。未来,氢能大巴、氢能重卡、氢动力船舶、氢动力无人机等都可能出现,氢能交通工具也有望与其他新能源交通工具一道,构筑城乡发展的运力网络。绿色发展越来越成为全球共同的发展理念。国内天然气制氢设备排名
制氢设备在生产过程中会产生大量的副产物,需要进行分离和处理,以避免对环境造成污染。福建自热式天然气制氢设备
焦炉煤气副产氢焦炉煤气是焦炭生产过程中的副产品,通常生产1t焦炭可副产380-420m3的焦炉气,焦炉煤气的组成见下表,氢气体积分数约为54-59%。变压吸附(PSA)氢气回收率为75-90%。根据2019年***焦炭产量,2019年焦炉煤气副产的氢气产量约为880万吨,占氢气总产量的38%。焦炉煤气副产的氢气约55%将继续被焦化厂或钢厂自用,45%对外销售。焦炉煤气制氢技术成本较低,如果考虑焦炉煤气外购成本,焦炉煤气制氢工艺成本为。如果不考虑焦炉煤气外购成本,则氢气产品的平均成本为。原材料焦炉煤气的成本占总成本的80%,焦炉煤气价格越氢成本优势越明显。如果从煤焦化过程开始分析制氢成本,苯、煤焦油、焦炭和氢四种产品进行成本分摊,氢气产品在总产出中的价值占比为,制氢成本为。焦炉煤气制氢既能实现的资源回收利用,又能弥补能源供应缺口,有助于形成良好的循环经济产业链。 福建自热式天然气制氢设备
氢气作为一种无色无味的气体,能够通过多种方式生产,根据生产过程中使用的能源和产生的环境影响可分为不同种类。绿氢是的氢能源,通过电解可再生能源来生产。由于能源来自可再生来源,绿氢被认为是应对气候变化的重要能源。当供电解用的能源来自于像风,水或太阳能这样的可再生能源时,就是绿氢。红氢与绿氢类似,也是通过电解生产的,但能源来自核电站。虽然会产生放射性废物,但这些废物可被回收,使得红氢具有绿色属性。黄氢的生产同样通过电解,但其能源来自公共电网。然而,如果电网主要依赖化石燃料,黄氢的环境影响将受到限制。绿氢,是通过风能或太阳能等可再生清洁能源发电,再利用这些清洁电能,以电解水方式制取氨气。天然气制氢设备...