能源数字化应抓好数据治理
数据治理(DataGovernance)是组织中涉及数据使用的一整套管理行为,由企业数据治理部门发起并推行,是关于如何制定和实施针对整个企业内部数据的商业应用和技术管理的一系列政策和流程。
不同的组织对数据治理有不同的定义,我国对数据治理的定义源于***在《加快推进国有企业数字化转型工作的通知》,其中对数据治理的描述为“明确数据治理归口管理部门,加强数据标准化、元数据和主数据管理工作,定期评估数据治理能力成熟度。加强生产现场、服务过程等数据动态采集,建立覆盖全业务链条的数据采集、传输和汇聚体系。加快大数据平台建设,创新数据融合分析与共享交换机制。强化业务场景数据建模,深入挖掘数据价值,提升数据洞察能力”。 零碳、节能、供热冷....面向综合能源服务的能源计量。质量数据采集采购
支持企业级工业互联网平台建设。
支持企业基于云架构,叠加物联网、大数据、人工智能等先进信息技术,构建企业级工业互联网平台,建设和完善智能传感器、智能网关、工业控制系统、边缘计算等基础设施
构建数据采集互联体系和数据中心,实现海量数据的采集、实时处理和云端汇聚,开展大数据建模分析、通用应用支撑和开发能力建设,支撑企业生产运营优化、产品全生命周期管理、资源优化配置,以及工业经验知识模块化和工业机理模型、工业APP开发。
支持企业围绕特定工业场景和前沿技术,建设技术专业型工业互联网平台,推动前沿技术与工业机理模型融合创新,为解决行业痛点提供平台支撑。 电厂数据采集系统价格能源需求侧管理要将煤炭消费转型升级作为重点.
我国供热系统情况复杂,对热量表的要求也很高。用户供热**常用的载热工质有热水和蒸汽,热费的结算却有很大差别,热水按热量表计量,常见的有计量机械式流量表、电磁式和超声波流量;而蒸汽长期以来却用质量计量,而后发展出现蒸汽计量。
冷冻水冷量计量就其方法来说,同热水的热量计量是一样的,所供冷量可以看作是负的热量。只是由于流体温度低,导致具体做法上出现一些差异。一些城市已经在施行冷计量,比如一些供冷期更长的南端。
算法+数据,助力新型电力系统的平衡与优化
从新型电力系统的特征看,要想实现电源结构向新能源转变、输电网向可调节负荷能源互联网转变、负荷特性向柔性和生产消费兼具性转变、运行特性向更加智能的平衡与协同优化方式转变,**依靠传统的能源技术是不可能的,必须引入数字技术,通过传统能源技术与数字技术的融合,实现能源系统的整体数字化转型。数字化是对传统信息化技术和工业技术(对能源行业而言,就是能源生产和运行技术)的发展、融合与创新。 国产工业自动化基础数据采集设备是该重回原点.
能源计量
是综合能源管理中的重要手段。就像我们去健身,会先要测一组体脂等身体数据,教练通过这些身体数据来设计合理的健身方案。而能源计量也是如此,先从电、水、气、热数据的采集,走到大数据分析、数智化运营、云边端协同的能源管理服务平台。
对于数据采集来说,电水气计量已经相对成熟。“虽然“冷”与水、电、气在市场经济社会中具有相同的商品属性,但在计量方面,要比早已进入市场并取得成功的水、电、气的计量收费复杂和困难。”那接下来我们就看一下供热冷计量。 能源需求侧管理从时间、空间、横向和纵向四个维度,通过多元化的作用机制,助力现代能源体系建设.能源需求数据
能源需求侧管理的外在条件.质量数据采集采购
企业要做到底层碳排放源数据有效收集
目前可以借助智能仪器仪表,网络传输以及后台数据系统就能构建出一个企业范围的能耗管理系统。但是对于产业的减碳而言,就需要考虑到整个经营和管理过程的全生命周期的碳管理。换句话说,当前大多数的能源管理系统只是管理了企业在能耗方面(电,水,气等)一个环节。而对于企业产品从设计到生产的能源消耗和原材料的选型以及加工环节,再到成品阶段的运输等等,还不能给出一个完成的产品碳足迹的管理。 质量数据采集采购