YOLO系列算法是目标识别领域很重要的技术之一,因为性能强大、消耗算力较少,一直以来都是实时目标检测领域的主要范式。该框架被大量用于各种实际应用,包括自动驾驶、监控和物流等行业的目标识别。自今年2月YOLOv9发布以后,近期,清华又推出了YOLOv10,作为计算机视觉领域的突破性框架,具备实时的端到...
SpeedDP作为一个低门槛的深度学习算法开发平台,能够为使用者提供从数据标注、模型训练、测试验证到RockChip嵌入式硬件平台模型部署的可视化AI开发功能。目前,SpeedDP提供网页端和移动端两种选择,网页端可以在局域网使用,而移动端能够快速直观的验证所开发的不同算法在移动端部署时的实际效果,使用起来更加便捷。SpeedDP也是一个运行在移动设备上的视觉算法测试工具集,支持的主要任务功能包括图像分类、目标检测、多目标跟踪,主要的部署平台是RockChip嵌入式硬件平台包括RK3399pro、RK3588等。软件可运行于Windows或Linux操作系统,来帮助使用者完成自动标注、AI算法(目前支持目标检测)开发(项目配置、训练、评估、测试)、模型部署等相关功能,在充分保证数据安全的基础上,能够有效减少人力、物力消耗,节省项目开发时间。SmartDP 极大地简化了从模型生成到部署的整个流程。四川安全图像标注功能

无人机只需要从基地起飞,就能够对指定区域进行巡检,智能摄像头能够自动问诊地面,识别护栏错位、路面积水、凹陷、裂缝、交通事故、车流异常等问题,然后标记位置。而控制中心能够实时查看前方画面,接收无人机回传的数据,并进行诊断分析,整个过程无需过多的人工干预。这种无人机智能问诊,是通过向无人机植入高性能的AI图像处理板以及定制专门的目标识别算法来实现的。成都慧视开发的Viztra-LE026图像处理板,就非常适合用在无人机智能化领域。这块板卡外形呈圆形设计,尺寸为ф38*12mm,功率不超过4W,整体呈现功耗低、尺寸小的特点。用在紧凑型的无人机当中也不会因为空间问题而苦恼,并且不会过多消耗无人机的续航。此外,Viztra-LE026这款图像处理板采用的是RV1126芯片,2.0TOPS的算力用在路面识别领域十分合适。安徽智能化图像标注优势SmartDP基于yolo实现算法模型的打造。

无人机夜间工作时需要依靠红外机芯进行高清成像,而想要具备AI检测识别的能力则可以通过植入图像处理板。成都慧视可以根据需求提供整套的建设方案,实现快速集成开发。慧视Viztra-LE026图像处理板+MiNO 17红外机芯的组合方案,两款产品均使用小巧设计,整体组合重量在30g左右,并且都采用小功耗设计,用在无人机领域不会过多增加负担。在算法的赋能下,能够实现稳定的目标检测识别。Viztra-LE026图像处理板重量在10g左右,采用了瑞芯微全国产化芯片RV1126,能够输出2.0TOPS的算力,功耗不高于4W。能够以30Hz帧率跟踪像素2*2的目标,能够识别像素为12*12的目标,且识别率高于85%。而MiNO 17红外机芯重量在20g左右(净重5g(不含镜头)),像素分辨率为640*512,采用9/13/25mm三种定焦设计,支持18中伪彩选择,功耗小于0.75W。
目前,有许多功能性AI工具可以帮助我们进行图像标注,其中慧视SpeedDP是针对AI零基础用户的低门槛AI开发平台,提供从数据标注、模型训练、测试验证到RockChip嵌入式硬件平台模型部署的可视化AI开发功能。SpeedDP提供丰富的算法参数设置接口,满足不同用户业务场景的定制化需求。此外,慧视SpeedDP开发平台支持本地化服务器部署,数据敏感的用户也无需担心数据信息泄露的问题。目前慧视SpeedDP开发平台主要提供目标检测算法的开发功能,不同的用户可针对自己的业务场景进行AI算法的定制化开发以及算法模型的快速迭代优化。SmartDP是一个小样本算法模型开发平台?

小兴安岭的日常巡护,是构筑东北生态安全的必要措施,进入冬季,整个小兴安岭将处于冰雪覆盖,按照传统的巡检模式,危险且费力。整个小兴安岭森林覆盖率达到96%,只靠肉眼的观察,很容易错过死角空白区的潜在危险,因此,无人机上线了。将无人机智能化,在吊舱的基础上加装具备智能图像处理的板卡,再通过定制算法的植入,一个智慧“巡检员”就上线了。面对大森林这样复杂的环境,成都慧视开发的高性能AI图像处理板Viztra-HE030可以胜任,这块板卡采用了瑞芯微旗舰级芯片RK3588,能够输出6.0TOPS的算力,考虑到小兴安岭冬天寒冷的环境,这款板卡能够适应零下40℃的环境,长时间的户外工作不在话下。慧视SmartDP是一个小样本算法开发工具。安徽智能化图像标注优势
遇到的算法模型不常见怎么办?四川安全图像标注功能
深度学习是机器学习的一个分支,只在近十年内才得到广泛的关注与发展。它与机器学习不同的,它模拟我们人类自己去识别人脸的思路。比如,神经学家发现了我们人类在认识一个东西、观察一个东西的时候,边缘检测类的神经元先反应比较大,也就是说我们看物体的时候永远都是先观察到边缘。就这样,经过科学家大量的观察与实验,总结出人眼识别的模式是基于特殊层级的抓取,从一个简单的层级到一个复杂的层级,这个层级的转变是有一个抽象迭代的过程的。深度学习就模拟了我们人类去观测物体这样一种方式,首先拿到互联网上海量的数据,拿到以后才有海量样本,把海量样本抓取过来做训练,抓取到重要特征,建立一个网络,因为深度学习就是建立一个多层的神经网络,肯定有很多层。有些简单的算法可能只有四五层,但是有些复杂的,像刚才讲的谷歌的,里面有一百多层。当然这其中有的层会去做一些数学计算,有的层会做图像预算,一般随着层级往下,特征会越来越抽象。四川安全图像标注功能
YOLO系列算法是目标识别领域很重要的技术之一,因为性能强大、消耗算力较少,一直以来都是实时目标检测领域的主要范式。该框架被大量用于各种实际应用,包括自动驾驶、监控和物流等行业的目标识别。自今年2月YOLOv9发布以后,近期,清华又推出了YOLOv10,作为计算机视觉领域的突破性框架,具备实时的端到...
重庆人防目标识别工具
2026-02-10
山东多系统适配目标识别24小时服务
2026-02-10
吉林智慧工业图像识别模块技术
2026-02-10
陕西低压线目标识别创意
2026-02-10
算法防抖图像识别模块目标检测
2026-02-10
重庆智慧消防AI智能解决方案
2026-02-10
贵州省时省力目标识别定制
2026-02-10
海南可靠目标识别编号
2026-02-10
甘肃专业目标识别工具
2026-02-10