功能性母粒相关图片
  • 安徽PBT功能性母粒材料,功能性母粒
  • 安徽PBT功能性母粒材料,功能性母粒
  • 安徽PBT功能性母粒材料,功能性母粒
功能性母粒基本参数
  • 品牌
  • 上海奥领
  • 型号
  • 齐全
功能性母粒企业商机

椰炭母粒:椰炭提炼出多元机能元素,并成为新的纺织素材。透过研发团队,可直接精炼出椰炭并融入纺织品。椰炭本身緻密且多孔、表面积大,其制品的附加机能,包括吸臭、除湿、抑菌、远红外线等作用外,还有保温、电磁波遮断效能,并产生一定负离子等功效。纺成纤维后,除可应用于衣物方面,还可应用于多种民生用品,并朝民生用途迈进。椰炭可应用于丝,制成纺织品,如衣服、裤子或鞋袜等,它也可成为适温纤维,或衣服内层,达脱臭功效,并分解空气中有害物质。若制成厨房或电冰箱内层或器具,可去除臭气,高效脱臭装置,具脱臭功效,达成双效脱臭触媒,椰碳高分子可吸收让蔬果老化的乙烯气体及维他命C的酵素,进一步防止食物腐坏,吸收催熟蔬果的乙烯气体。竹炭塑料母粒较强的吸附和除臭功能,抑菌、防霉;相容性好,分散性佳。安徽PBT功能性母粒材料

安徽PBT功能性母粒材料,功能性母粒

纳米咖啡炭母粒是以天然咖啡为原料,经过低温碳化和高温活化之后,得到了咖啡炭。再进入科技物理研磨,将咖啡炭研磨成为10的负7~8次方的纳米咖啡炭粉,所产生的纳米咖啡炭粉,是不受潮、不溶于水、比水重、导电性强、可使衍生的纺织品产业链耗损率极低,增强机能特性佳,吸湿、除臭、抑菌抑菌、负离子、抗紫外线、远红外线、蓄热保暖,再将纳米咖啡炭粉加入无机抑菌剂与多元聚酯共混炼增强机能性,制造出改性机能切片母粒,它是纺织材料的一次创新,它也逐渐的被广大消费者所接纳和喜爱。石墨烯母粒供应商功能母粒在薄膜、板材、纱线等应用领域,展示出高度的相容性、稳定性。

安徽PBT功能性母粒材料,功能性母粒

目前国际上较多采用的塑料制品加工方式是采用添加抑菌母粒的方法生产抑菌塑料制品。抑菌母粒是塑料与用于载体和分散抑菌剂的载体数值混配制成的颗粒状浓缩物,其中抑菌剂含量较高。成型加工抑菌制品时,只需在塑料中加入少量的抑菌母粒即可。通过抑菌母粒技术,不仅使抑菌剂分散效果得到大幅度提高,还可以免去大量共混造粒工作,操作简单,成型周期稳定,提高生产效率,不对环境造成影响。与此同时,产品品质得以保障,因此在抑菌塑料制品市场上的需求只会越来越大。

凉感母粒采用特制凉感无机纳米颗粒为有效成分,凉感细微粒子均匀分布在塑料切片中,可拉丝制成凉感纱线,织造成具有凉感功能的面料、织物。凉感物质富含各种微量元素和多种矿物质,与空气中的水分进行循环式低能交换,从而凸显凉感,使人体体验到舒适的凉爽感。用于凉爽型纤维的开发,特别是生产十字型的凉爽纤维效果更佳;用于夏天服饰用品如衬衣、内衣、T恤等。使用方法:建议添加量5%(重量比),与拉丝级普通切片共混纺丝。可按照客户要求提供多种基材,如PET、PP、PA、PA66等。凉感母粒可纺性好,对纺丝组件影响小。

安徽PBT功能性母粒材料,功能性母粒

功能性母粒,是指一类具有特殊功能的母粒。各种塑料助剂的浓缩物直接添加不易分散,使用效率不高,因而常以母粒的形式添加。功能性母粒(如抗老化助剂,抗静电剂,阻燃剂,填料等)是含有除颜色之外的其它功能性助剂成分的母粒。具体的功能完全取决于所含的有效成分。这些功能可简单地分为改善塑料成型加工性能、改善塑料的理化性能、增加产品应用功能三大类。粒径分布:粒径分布宽的粉料装填性比粒径分布窄的更密实。因为小粒径可以进入大粒子之间的间隙中去,可是将二种粒径相差大的粉料相混合,则难以混得均匀。凉感母粒具有很高的化学稳定性和热稳定性,在化纤等中应用能提高化纤的导热值,从而带给人体凉爽的感觉。杭州pe抗菌母粒

竹炭塑料母粒用于生产制作竹炭纤维或织物,如内衣、运动服、T恤等。安徽PBT功能性母粒材料

抗紫外线功能母粒具有普通母粒的功能,而且还具有塑料制品的其他功能,抗紫外线功能母粒的性能特点:耐候性,抗静电功能,阻燃功能,发泡功能等。使用功能母粒生产塑料制品。该着色剂在产品中分散性好,色泽鲜艳,产品表面无色斑或色差,变色方便,成本低廉,环保,劳动强度低,被普遍使用,塑料着色法具有很好的发展前景。抗紫外线功能母粒普遍用于聚乙烯,聚丙烯,聚苯乙烯,ABS,尼龙,PC,PMMA,PET和其他树脂中,以生产彩色纤维,服装,日用塑料,电线和电缆以及家用电器,农用薄膜,汽车零件 ,健身器材等产品。安徽PBT功能性母粒材料

上海奥领新材料科技有限公司是我国功能性粉体,功能性母粒,功能性纱线,功能性纺织品专业化较早的有限责任公司(自然)之一,公司始建于2012-05-10,在全国各个地区建立了良好的商贸渠道和技术协作关系。公司承担并建设完成服装内衣多项重点项目,取得了明显的社会和经济效益。多年来,已经为我国服装内衣行业生产、经济等的发展做出了重要贡献。

与功能性母粒相关的**
信息来源于互联网 本站不为信息真实性负责