(POM)聚甲醛的结构与密度的关系:
1.(POM)聚甲醛没有侧链;
2.C—O键的键长比C—C键的键长短;
3.C和O原子是螺旋构型,分子链间距小,密度大;
如:均聚甲醛密度1.425~1.430g/cm3>聚乙烯0.960g/cm3
4.高密度的线性聚合物
(POM)聚甲醛的结构与结晶度的关系:
1.聚甲醛没有侧链;
2.分子链柔顺性大;
3.链的结构规整性高;
如:均聚甲醛结晶度75~85%,共聚甲醛70~75%;结晶速度快,即使快速猝火,结晶度仍达到65%以上
4.高结晶度线性聚合物
POM的疲劳强度十分突出,10交变载荷作用后,疲劳强度可达35MPa,而PA和PC*为28MPa。电动工具级POM颗粒聚甲醛(英文:polyformaldehyde,缩写为POM),热塑性结晶聚合物,被誉为“超钢”或者“赛钢”,又称聚氧亚甲基。
它是继聚酰胺之后又一种综合性能优良的工程塑料,具有高的力学性能,如强度、模量、耐磨性、韧性、耐疲劳性和抗蠕变性,还具有优良的电绝缘性、耐溶剂性和可加工性,是五大通用工程塑料之一。
均聚甲醛密度、结晶度、熔点都高,但是热稳定性差,加工温度范围窄(约10℃),对酸碱稳定性略低;共聚甲醛密度、结晶度、熔点、强度都较低,但是热稳定性好,不容易分解,加工温度范围宽(50℃),对酸碱的稳定性较好。医用级POM材质聚甲醛 POM耐电弧性极好,并可在高温下保持。
想要制造均聚甲醛,首先要制造无水甲醛。主要方法是首先通过水合甲醛(甲二醇,HCH(OH)2)与乙醇的反应生成甲醛缩(二乙氧基甲烷,CH2(OC2H5)2),再将甲缩醛与水的混合物通过萃取或真空蒸馏的方法脱水,然后通过加热甲缩醛的方式释放其中的甲醛。此时甲醛在阴离子催化下开始聚合,然后通过乙酸酐进行封端处理,从而得到稳定的均聚甲醛。
要制造共聚甲醛,首先要把甲醛转化为三氧杂环已烷(特别是1,3,5-三氧杂环己烷,又称三聚甲醛)。
关于聚甲醛电缆护套阻燃性差:
POM本身的阻燃性是比较差(比一般的合成高分子材料都易燃),且热稳定性差,所以POM阻燃很难做到V0,通常可通过加入阻燃剂来提高其阻燃性,但由于POM的分子结构特点,常规的含卤阻燃剂体系如卤代磷酸酯、卤化石蜡、三氧化二锑,在加入到POM中,不仅不会提高材料的阻燃性,反而会加剧聚甲醛的燃烧。
建议可加入膨胀型阻燃剂:如红磷、磷酸盐、氢氧化铝(镁)、三氰尿酸和聚氰胺盐等或其中几种复配使用。
聚甲醛 POM力学性能优异,比强度可达50.5MPa,比刚度可达2650MPa,与金属十分接近。
1859年,俄国化学家布特列洛夫在发现甲醛的同时得到了它的聚合物。
1920年,高分子学科奠基人、德国科学家斯道丁格尔开始了高分子科学的早期工作。
1948年,杜邦公司的研究者发现了甲醛聚合物具有优良的耐溶剂性。
1956年,杜邦公司研发的均聚甲醛产品被命名为“Delrin”。
1960年,杜邦公司的均聚甲醛实现销售。塞拉尼斯公司宣传将它的共聚甲醛产品“Celcon”产业化。
1962年,塞拉尼斯在德克萨斯州比肖普(Bishop)的共聚甲醛工厂开始生产“Celcon”树脂。
1962年,塞拉尼斯公司还与日本大赛璐公司宣布建立合资企业Polyplastic。开始输入美国树脂,使用合资企业的商品名Duracon(实际公司法律上成立日期是1964年)
1968年,日本本土装置产出产品
1963年,德国赫斯特公司(Hoechst)与塞拉尼斯在法兰克福建立的合资企业开始出售其产品“Hostaform-C”
1963年,塞拉尼斯与英国帝国化学公司ICI宣布合作以Kematal商品名在欧洲出售共聚甲醛(pom)
1987年,德国赫斯特公司收购了美国塞拉尼斯公司,自此Ticona成为赫斯特集团的工程塑料部门的名字
日本是目前世界上唯*有多家大公司生产聚甲醛的国家
1968年,宝理公司的7500吨/年装置投产,日本产的Duracon开始销售,次年便发表产能倍增计划 POM 被用于制造各种滑动、转动机械零件。医用级POM材质
聚甲醛 POM可在高温下保持相当的化学稳定性。吸水性小,尺寸稳定性好。电动工具级POM颗粒
POM吸水率大于0.2%,成型前应预干燥,POM熔融温度与分解温度相近,成型性较差,可进行注塑、挤出、吹塑、滚塑、焊接、粘接、涂膜、印刷、电镀、机加工、注塑是极重要的加工方法,成型收缩率大,模具温度宜高些,或进行退火处理,或加入增强材料(如无碱玻璃纤维)。
POM强度高,质轻,常用来代替铜、锌、锡、铅等有色金属,广大用于工业机械、汽车、电子电器、日用品、管道及配件、精密仪器和建材等部门。
它是以甲醛等为原料聚合所得。POM-H(聚甲醛均聚物),POM-K(聚甲醛共聚物)是高密度、高结晶度的热塑性工程塑料。具有良好的物理、机械和化学性能,尤其是有优异的耐摩擦性能。 电动工具级POM颗粒