市场研究公司IDC称,边缘计算被描述为“微型数据中心的网状网络,在本地处理或存储关键数据,并将所有接收到的数据推送到中心数据中心或云存储库,其覆盖范围不到100平方英尺”。例如,一列火车可能包含可以立即提供其发动机状态信息的传感器。在边缘计算中,传感器数据不需要传输到火车上或者云端的数据中心,来查看是否有什么东西影响了发动机的运转。本地化数据处理和存储对计算网络的压力更小。当发送到云的数据变少时,发生延迟的可能性--云端与物联网设备之间的交互导致的数据处理延迟--就会降低。这也让基于边缘计算技术的硬件承担了更多的任务,它们包含用于收集数据的传感器和用于处理联网设备中的数据的CPU或GPU。全球智能手机的快速发展,推动了移动终端和“边缘计算”的发展。云南低延时边缘计算VR
边缘计算的优势:1、接近实时的数据处理:因为数据是在边缘结点进行分析,降低了延迟,提升应用的响应速度。2、减少数据传输:数据不需要推送到遥远的云端,减少智能设备和数据中心传输的数据量,节省带宽成本,同时还能减小中心网络的拥堵。比如facebook等社交软件的用户上传的照片在边缘调整到合适的分辨率再上传到云端。3、数据安全:一些比较敏感的数据直接在边缘进行分析,不用当心数据泄漏。4、提高可用性:分担(offload)了中心服务器的计算任务,一定程度上消除了主要的瓶颈,并且降低了出现单点故障的可能。重庆人工智能边缘计算VR边缘计算的优势:由于减少了中间传输的过程,数据处理的速度也更快。
边缘计算的模式和拓扑结构是什么样的呢。比如要在一套数据采集系统里,以一个云服务器为中心,移动客户端,PC客户端或第三方接口等接入到云服务器获取数据,而数据采集方呢,由数据采集模块来连接到云服务中。数据采集模块可以采集PLC,变频器,智能仪表等,将数据上传到云服务器中,由服务器进行数据分析和计算,然后PC或移动客户端,第三方接口就可以获取数据分析的结果。但是这种情况下,随着设备的接入越来越多,云服务器的负担也会越来越重,而且接入的PLC,控制器等的种类也越来越多,原来的云服务数据计算模式难以满足越来越复杂的应用。这时候边缘计算就应运而生了。在原拓扑结构不变的情况,可无缝引入边缘计算。在数据采集模块端开放边缘计算功能,将复杂的计算,策略,规则等,由数据采集模块进行运算,得到输出结果后,只需要将结果上传到云服务中。再由PC客户端,移动客户端及第三方接口从云服务获取。
边缘计算相比把所有视频上传到云中心,并让云中心去解决,这种方式能够更快的解决问题。物联网的发展让普通人家里的电子器件都变得活泼了起来,让这些电子器件连上网络是不够的,我们需要更好的利用这些电子元件产生的数据,并利用这些数据更好的为当前家庭服务。考虑到网络带宽和数据私密保护,我们需要这些数据很好能在本地流通,并直接在本地处理即可。我们需要网关作为边缘结点,让它自己消费家庭里所产生的数据。数据的来源有很多(可以是来自电脑、手机、传感器等任何智能设备)。若想更好的在边缘节点上部署应用程序的工作负载,需要考虑的方面:部署策略。
随着物联网越来越火,同时伴随着物联网而来的,就是各种概念和各种技术,其中一个就是边缘计算,当然还有雾计算。其实边缘计算和雾计算都差不多,雾计算只是和云计算是相对的。使用边缘计算的优势在哪里呢:让计算变得更为灵活和可控。前面说到,接入设备的服务器比较难做到统一的计算分析标准,因为物联网可是一个万物接入的网络,每一个设备采集的数据不一样。如果使用了边缘计算,就可以单独针对每一个设备进行相应的计算和分析。当然,如果相同的设备或者相同参数的,可以进行复制使用同一套计算标准或算法。如果将计算脚本开放出来给用户,用户就可以自定义去添加自己的计算公式和行为。利用边缘节点来实现分区计算不光光带来了有效分割计算任务的挑战。北京高性能边缘计算
边缘计算处于物理实体和工业连接之间,或处于物理实体的顶端。云南低延时边缘计算VR
边缘节点上的通用计算能力:理论上,可以在位于边缘设备和云平台之间的某几个节点上完成边缘计算,包括接入点、基站、网关、业务节点、路由器、交换机等。例如,基站可以根据工作负载能力,执行数字信号处理(DSP)。但是在实践中,基站可能并不适合处理分析工作,因为DSP并不是为通用计算设计的。此外,这些节点是否可以执行除了现有工作之外的计算还不太清楚。由CAVIUM提供的OCTEONFusion®Family是一个小型“芯片上基站”单元,可扩展从6个到14个的内核,以支持32到300+的用户。这种基站可在非高峰时间使用多个计算中心的运算能力。云南低延时边缘计算VR