可解释的人工智能(XAI)许多人工智能/机器学习模型(特别是/神经网络/'神经网络)都是黑盒模型。在经过大量数据的训练之后,由于难以确定如何以及为何做出某些决定,这些模型通常是不负责任的。为了使它们更具责任感和透明度,需要使它们更具解释性。一个新兴的研究领域称为“可解释性”,它使用复杂的技术来帮助为诸如决策树之类的简单系统以及诸如神经网络之类的复杂系统带来透明度。解释有助于建立对系统的信任,也可以帮助研究人员了解为什么会犯错误以及如何快速纠正错误。在医疗、银行、金融服务和保险等敏感领域,不能盲目相信人工智能决策。例如,在批准银行借款时,需要理解为什么有人被拒绝,特别是当考虑到种族偏见潜入其他人工智能系统的例子时。随着人工智能变得越来越复杂,将这些黑盒模型变得更加清晰将变得越来越重要,可解释的人工智能(XAI)应该成为未来开发人工智能系统的组织关注的主要领域。人工智能亦称智械、机器智能,指由人制造出来的机器所表现出来的智能。湖北GPU人工智能加速运算
人工智能已经统治世界多年了,使用人工智能解决不同领域重大问题的方式无疑值得一提。几十年前,这项技术还不够先进,无法满足商业需求和问题。但是随着人工智能的出现,情况变得更好了。人工智能在几乎所有领域的应用程度值得赞赏。随着这个领域带来了如此多的机会,在未来几年里看到人工智能在各个方面的发展也就不足为奇了。保健行业:几乎不可能想象没有人工智能的医疗行业。无论是以电子方式维护记录,机器人协助外科医生,还是大幅减少网络攻击,人工智能都使这一领域成为可能。这一领域是我们的福气,利用每一种可能的技术来提供较佳的结果一直是我们的优先事项。把老年人放在心上,人们可以期待低成本的传感设备,使用人工智能为家中的老年人提供“实质性的能力”。尽管要做到这一点,还需要集成其他平台,如机器人技术、机器学习等,但人工智能无疑是基础。北京NPU人工智能人工智能开始被用于物流、数据挖掘、医学诊断等领域。
人工智能的趋势与展望:从专属智能向通用智能发展。如何实现从专属人工智能向通用人工智能的跨越式发展,既是下一代人工智能发展的必然趋势,也是研究与应用领域的重大挑战。2016年10月,美国国家科学技术组织会发布《国家人工智能研究与发展战略计划》,提出在美国的人工智能中长期发展策略中要着重研究通用人工智能。阿尔法狗系统开发团队创始人戴密斯·哈萨比斯提出朝着“创造解决世界上一切问题的通用人工智能”这一目标前进。微软在2017年成立了通用人工智能实验室,众多感知、学习、推理、自然语言理解等方面的科学家参与其中。
建立对新技术的信任:第二个障碍是技术本身,它较初对许多人来说是难以理解的。在这里,重要的是消除人们普遍担心的问题,即由AI控制的机器人会在晚上突然突然爆发自己的意志。有人声称,人工智能系统如何做出决定是不可预测和不可理解的。那不是真的神经网络是乘法和加法的序列。它们是确定性的,其工作原理可以与学校的数学联系起来,但是它们确实有许多参数。因此,您无法一目了然地告诉他们他们是如何做出决定的。也有人呼吁AI使其决策路径易于理解,较好是遵循if-then-else模式的可理解规则。如果可能的话,将不需要复杂的模型,因为常规编程就足够了。但是,人工智能是对问题的答案,在这些问题中,如果易于解释的其他规则则不存在任何解决方案。在这些系统中建立信任所需要的是可测试的,可靠的系统,可以通过使用该系统并了解AI在给定用例中的响应方式来进行探索。当这项测试快速而轻松地进行时,发现的结果以及由AI驱动的机器人将受到信任。人工智能将涉及到计算机科学、心理学、哲学和语言学等学科。
如今,人工智能在捕获,处理和分析数据方面起着举足轻重的作用!合并数据元素和管理数据中心也变得越来越高效和有用。随着数据成为维持几乎所有业务运营以获取洞察力和业务成果的先决条件,数据中心正处于这种数字化转型的关键。这些容纳计算机和设备的物理设施满足了现代经济的信息需求。数据中心提供无缝的数据备份和恢复功能,同时支持云存储应用程序和事务。除了促进经济发展之外,数据中心生态系统还吸引了许多国际高科技公司参与。此外,数据中心的存在确保了当地社区的较佳投资环境和就业机会。尽管他们在带来数字**方面发挥了关键作用,但他们并非没有问题。据Gartner分析师DaveCappuccio称,到2025年,将有80%的企业关闭其传统数据中心。考虑到传统数据中心面临的许多问题,如升级准备不足,基础设施挑战,环境问题等,这些数据是合适的。对此的解决方案是利用人工智能来增强数据中心的功能和基础架构。人工智能能够从数据中学习;山西VPU人工智能产品方案
企业在实施人工智能策略之前,需要考虑采用一些新技术以帮助保护隐私,并确保符合安全标准。湖北GPU人工智能加速运算
人工智能的一个比较流行的定义,也是该领域较早的定义,是由当时麻省理工学院的约翰·麦卡锡在1956年的达特矛斯会议上提出的:人工智能就是要让机器的行为看起来就像是人所表现出的智能行为一样。但是这个定义似乎忽略了强人工智能的可能性(见下)。另一个定义指人工智能是人造机器所表现出来的智能。总体来讲,目前对人工智能的定义大多可划分为四类,即机器“像人一样思考”、“像人一样行动”、“理性地思考”和“理性地行动”。这里“行动”应广义地理解为采取行动,或制定行动的决策,而不是肢体动作。强人工智能观点认为有可能制造出真正能推理(Reasoning)和解决问题(解决问题)的智能机器,并且,这样的机器能将被认为是有知觉的,有自我意识的。强人工智能可以有两类:1、类人的人工智能,即机器的思考和推理就像人的思维一样。2、非类人的人工智能,即机器产生了和人完全不一样的知觉和意识,使用和人完全不一样的推理方式。湖北GPU人工智能加速运算