多光子显微镜基本参数
  • 品牌
  • Bruker,布鲁克
  • 型号
  • 型号齐全
  • 类型
  • 立体显微镜
多光子显微镜企业商机

    多光子显微镜因拥有较深的成像深度,和较高的对比度在生物成像中有着重要的意义,但是它通常需要较高的功率。结合时间上展开的超短脉冲可以实现超快的扫描速度和较深的成像深度,但是其本身所利用的近红外波段的光会导致分辨率较低。清华大学陈宏伟教授和北京大学席鹏研究员合作研究,结合了结构光成像和上转化粒子,开发了一种基于多光子上转化材料和时间编码结构光显微镜的高速超分辨成像系统(MUTE-SIM)。它可以实现50MHz的超高的扫描速度,并突破了衍射极限,实现了超分辨成像。相较于普通的荧光显微镜,该显微镜提升了,并且只需要较低的激发功率。这种超快、低功率、多光子的超分辨技术,在分辨率高的生物深层组织成像上有着长远的应用前景。 1990年A.Mayer在Science上刊文展示了双光子激光扫描荧光显微镜。Ultima 2P Plus多光子显微镜研究

Ultima 2P Plus多光子显微镜研究,多光子显微镜

要想实现离散的轴向重新聚焦,需要在OBJ1的焦平面中放置一个阶梯镜(图3b)。当入射激光束被OBJ1聚焦到的焦平面恰好与阶梯重合时,被反射的激光将在无穷大的空间中成为准直光束,并在OBJ2的焦平面上形成激光光斑。并且返回的激光束会被GSM消除横向扫描,即OBJ2形成的焦点不会进行横向扫描,实现轴向扫描。如果激光点被扫描到与焦平面不一致的阶梯,则会形成远离镜面的激光焦点,返回的激光束会在无穷大的空间中会聚或发散,进而导致由OBJ2形成的激光焦点也在轴向重新聚焦,通过这种方式即能实现离散的轴向扫描。对于已精确匹配两个物镜光瞳的光学装置,不会引入像差。为了进行连续的轴向重新聚焦,将阶梯镜替换为稍微倾斜的平面镜,同时入射的激光焦点也需要被倾斜,使得其以垂直于镜面的方向入射,通过相对入射激光束稍微平移OBJ1即可实现这种倾斜。荧光多光子显微镜多光子激发多光子显微镜是衡量一个国家制造业和高科技发展水平的重要标准之一。

Ultima 2P Plus多光子显微镜研究,多光子显微镜

Ca2+是重要的第二信使,对于调节细胞的生理反应具有重要的作用,开发和利用双光子荧光显微成像技术对Ca2+荧光信号进行观测,可以从某些方面对有机体或细胞的变化机制进行分析,具有重要的意义。利用双光子荧光显微成像技术可以观察细胞内用荧光探针标记的 Ca2*的时间和空间的荧光图像的变化,还可以观察细胞某一层面或局部的(Ca2+)荧光图像和变化。通过对单细胞的研究发现,Ca2+不仅在细胞局部区域间的分布是不均匀的,而且细胞内各局部区域的不同深度或层次间也存在不同程度的 Ca2+梯差即所谓的空间 Ca2梯差。

与传统的单光子宽视野荧光显微镜相比,多光子显微镜(MPM)具有光学切片和深层成像等功能,这两个优势极大地促进了研究者们对于完整大脑深处神经的了解与认识。2019年,JeromeLecoq等人从大脑深处的神经元成像、大量神经元成像、高速神经元成像这三个方面论述了相关的MPM技术[1]。想要将神经元活动与复杂行为联系起来,通常需要对大脑皮质深层的神经元进行成像,这就要求MPM具有深层成像的能力。激发和发射光会被生物组织高度散射和吸收是限制MPM成像深度的主要因素,虽然可以通过增加激光强度来解决散射问题,但这会带来其他问题,例如烧坏样品、离焦和近表面荧光激发。增加MPM成像深度比较好的方法是用更长的波长作为激发光。多光子激光扫描显微镜采用波长较长的红外激光,能量脉冲式激发,红外光比可见光在生物组织中的穿透力更强。

Ultima 2P Plus多光子显微镜研究,多光子显微镜

通过添加FACED模块,可以将基于标准振镜的现有2PM轻松转换为千赫兹成像系统。FACED双光子荧光显微镜遵循光栅扫描,需要很少的计算处理,在稀疏或密集的标记样本中均可以使用,并且不受串扰的影响,而且对整个图像平面采样后可以进行运动校正。实验中没有观察到光损伤的迹象,此外,子脉冲延迟到达相同的样品位置,能为荧光团提供充足的时间使其从易于破坏的暗态返回到基态,可以明显减少光漂白。使用现有的传感器,FACED双光子荧光显微镜可以提供足够的速度和灵敏度来检测神经元过程中的钙瞬变和谷氨酸瞬变,以及来自细胞体的尖峰和亚阈值电压。该组使用基于FACED的2PM显微镜,在小鼠大脑中实现了千赫兹速率的神经活动成像。在物镜平均激光功率为10-85mW下,他们测量了清醒小鼠中V1神经元的自发性和感觉诱发性的超阈值和亚阈值电位活动。国内市场多光子显微镜销售渠道。荧光多光子显微镜多光子激发

点扫描多光子显微镜可以深入样本并捕捉高质量的图像,但这个过程极其缓慢,因为图像是一次形成一个点。Ultima 2P Plus多光子显微镜研究

因斯蔻浦(上海)生物科技有限公司 双光子显微镜的基本原理是:在高光子密度的情况下,荧光分子可以同时吸收 2 个长波长的光子,在经过一个很短的所谓激发态寿命的时间后,发射出一个波长较短的光子;其效果和使用一个波长为长波长一半的光子去激发荧光分子是相同的。双光子激发需要很高的光子密度,为了不损伤细胞,双光子显微镜使用高能量锁模脉冲激光器。这种激光器发出的激光具有很高的峰值能量和很低的平均能量,其脉冲宽度只有 100 飞秒,而其周期可以达到 80至100兆赫兹。在使用高数值孔径的物镜将脉冲激光的光子聚焦时,物镜的焦点处的光子密度是比较高的,双光子激发只发生在物镜的焦点上,所以双光子显微镜不需要共聚焦***,提高了荧光检测效率。Ultima 2P Plus多光子显微镜研究

与多光子显微镜相关的**
与多光子显微镜相关的扩展资料【更多】
多光子显微镜是一种用于生物学领域的分析仪器,于2009年04月01日启用。
信息来源于互联网 本站不为信息真实性负责