避雷器是保护电力设备免受过电压侵害的关键装置,其内部氧化锌阀片的局部放电会导致阀片性能劣化,影响保护效果。局部放电检测在避雷器中的应用,可及时发现阀片的老化和受潮等问题。采用超声波检测法时,将传感器贴在避雷器外壳上,捕捉放电产生的超声波信号,根据信号的强度和频谱特征判断放电的严重程度。此外,还可结合泄漏电流检测,当局部放电发展到一定程度时,避雷器的泄漏电流会明显增大,两者结合能更***地评估避雷器的运行状态。GZPD-4D系列分布式局部放电监测与评价的系统构成。振荡波局部放电监测系统组件

互感器包括电流互感器和电压互感器,其绝缘局部放电会影响计量准确性和保护装置的可靠性。电流互感器的局部放电多发生在一次绕组和二次绕组之间的绝缘层,因电场分布不均或绝缘损伤引发。检测时可采用超高频法,在互感器外壳安装超高频传感器,捕捉放电信号,同时结合油中溶解气体分析,若检测到乙炔等特征气体,可辅助判断局部放电的存在。电压互感器的局部放电检测则需注意其接线方式,避免因高压引线干扰导致检测结果不准确,通常在设备停运状态下进行离线检测,以获得更可靠的数据。局部放电次数安装缺陷引发局部放电,如何利用先进检测技术(如超声检测)发现隐藏安装缺陷?

局部放电在高压开关柜的绝缘隔板中的检测可预防相间短路事故,绝缘隔板用于分隔开关柜内的不同相别,若存在局部放电,会导致隔板绝缘性能下降,可能引发相间短路。检测时可采用超声波法,将传感器贴在隔板表面,检测放电产生的超声波信号,同时结合局部放电量测量,评估隔板的绝缘状态。对于运行中的开关柜,建议每1-2年对绝缘隔板进行一次局部放电检测,特别是在潮湿天气后,需增加检测频次,因为潮湿会加速隔板表面的沿面放电。及时发现并处理绝缘隔板的局部放电问题,可有效提高开关柜的运行安全性。
局部放电在GIS设备的盆式绝缘子中的检测尤为重要,盆式绝缘子是GIS设备中的关键绝缘部件,若存在局部放电,会导致绝缘子表面腐蚀和绝缘劣化,严重时引发设备故障。检测时可采用超高频法,在绝缘子附近布置传感器,接收放电产生的超高频信号,同时结合超声波检测,定位放电点的具置。对于运行中的GIS设备,建议每3年对盆式绝缘子进行一次局部放电检测,若发现放电信号,需及时处理,如清洁绝缘子表面或更换绝缘子。加强盆式绝缘子的局部放电检测,可提高GIS设备的运行可靠性。若需对分布式局部放电监测系统进行远程调试,这会额外增加多长时间的调试周期?

局部放电的超声波检测在判断电力设备是否存在电晕放电中的应用准确,电晕放电是发生在导体表面的局部放电,会产生超声波信号,通过超声波检测可判断是否存在电晕放电及放电强度。电晕放电的超声波信号具有特定的频谱特征,频率通常在-0kHz之间,信号强度随电压升高而增大。在变电站的高压引线、绝缘子表面等部位,通过超声波检测可发现电晕放电,及时采取措施消除,如打磨导体、清洁绝缘子表面等。超声波检测为电晕放电的诊断和处理提供了有效手段,减少了电晕放电对设备的危害。热应力导致局部放电时,设备的温度场如何变化,与局部放电的关系怎样?震荡波局部放电问题解决方案
针对大型电力设备集群的分布式局部放电监测系统,调试周期通常多长?振荡波局部放电监测系统组件
局部放电的超高频检测技术在GIS设备中的应用具有独特优势,因GIS设备为金属封闭结构,内部放电产生的超高频电磁波不易外泄,传感器可通过**接口或观察窗接收信号,定位精度可达厘米级。在GIS设备运行中,通过超高频检测可及时发现绝缘件表面划痕、导体前列等缺陷引起的局部放电,结合SF6气体分解产物分析,能准确判断故障性质。例如,当检测到超高频信号且气体中SO2含量增加时,可能是绝缘件表面发生沿面放电,需及时打开设备进行检查和处理。振荡波局部放电监测系统组件