GZAFV-01T子系统的原理◆监测原理OLTC在切换的过程中伴随着机械振动,在线监测技术主要利用AFV和驱动电机电流的信号分析法综合对OLTC状态进行诊断。根据AFV信号波谱的异常分析其状态,结合驱动电机电流分析技术,监测能够覆盖档位联接、时间序列、控制继电器、驱动电机、制动器、润滑、线性、电弧、过热和焦炭、电气节点磨损、过渡阻抗等11个项目。较传统停电检修方式,在线监测法针对的故障类型更加***,而且在带电运行时也能够迅速有效反映OLTC运行状态。声学指纹振动监测软件介绍。杭州特高压GIS振动监测技术服务

OLTC的振动信号主要通过两种路径传播:一是通过静触头的机械连接直接传递至变压器外壳;二是通过变压器油的声波传导。这两种路径的信号特征有所不同,静触头传递的信号通常包含高频成分(如触头撞击),而油中传播的信号则以中低频为主(如机械共振)。AFV信号分析法需结合多传感器布置,以捕捉不同频段的振动信息,从而提高故障诊断的准确性。例如,触头接触不良会导致高频振动能量增加,而弹簧弹性下降则可能引起低频振动幅值的变化。特高压振动功能特点杭州国洲电力科技有限公司振动声学指纹在线监测技术的标准化实施路径。

电弧故障的AFV信号诊断方法。OLTC在切换过程中可能产生电弧,尤其是在触头接触不良或绝缘劣化的情况下。电弧不仅会加速触头烧蚀,还会产生高频电磁噪声和机械振动。AFV信号分析法通过监测振动信号中的高频突发成分(如10kHz以上的瞬态脉冲),可以判断电弧发生的强度和频率。此外,电弧振动信号通常具有非平稳特性,需结合短时傅里叶变换(STFT)或希尔伯特-黄变换(HHT)进行时频分析,以提高诊断灵敏度。与传统检测方法(如油色谱分析、红外测温)相比,AFV信号分析法具有实时性强、灵敏度高、无需停电等优势。油色谱分析虽能检测绝缘劣化,但无法直接反映机械故障;而AFV信号可直接捕捉OLTC的机械状态变化。此外,AFV传感器安装简便,通常只需在变压器外壳布置少量测点即可实现长期监测,非常适合智能电网中的在线状态评估。
变压器振动主要包括OLTC切换时的瞬态振动、电流通过绕组时电动力引起的绕组振动、硅钢片的磁致伸缩及硅钢片接缝处与叠片之间的漏磁导致铁芯振动、以及冷却装置工作时的振动。其中,由冷却系统引起的基本振动频率小于100Hz,不作为变压器的分析内容。变压器内部的声纹振动信号通过绝缘油、支撑单元、加强筋结构等多种途径传播至变压器外壁,可由安装于外壁的声纹振动传感器测得。
OLTC切换过程中,分接选择器动作、切换开关动作、动静触头碰撞等机械动作产生声纹振动信号,信号包含触头分合状态、三相触头是否同期、触头表面是否平整、切换是否到位等信息,可反映OLTC结构磨损、卡滞、松动、变形等故障。切换过程中若储能弹簧性能发生改变或储能过程中存在机构卡塞等现象,必然伴随着电机驱动力矩的变化,从而使驱动电机电流发生变化。因此,可通过监测驱动电机电流信号与声纹振动信号的结合分析,可更加有效的评价OLTC在线运行状态下的健康态势评价与故障类型诊断。 杭州国洲电力科技有限公司振动声学指纹在线监测服务的售后支持体系。

AFV 信号分析法为 OLTC 的状态监测提供了一种精细的技术手段。OLTC 在运行过程中,内部机械部件的运动撞击和摩擦产生的脉冲冲击力,通过变压器油和静触头传递到变压器箱壁,形成具有独特特征的振动信号。AFV 传感器能够高精度地采集这些信号,并通过先进的信号处理算法进行分析。当 OLTC 出现弹簧弹性下降的故障时,振动信号的低频部分会出现特定的变化,如频率降低、幅值增大。通过对这些信号特征的识别和分析,我们可以准确判断 OLTC 的故障状态,及时采取维修措施,避免因故障导致的电力系统不稳定。GZAFV-06T型便携式变压器声纹振动 监测与诊断系统原理。进口振动监测文献
GZAFV-01型声纹振动监测系统(变压器、电抗器)专业设计和性能优化。杭州特高压GIS振动监测技术服务
AFV 信号分析法为 OLTC 的状态监测提供了一种全新的视角。OLTC 在运行过程中,其内部触头的分 / 合操作会产生一系列复杂的物理现象,这些现象都会反映在 AFV 信号中。触头在分 / 合过程中,由于材料的消耗和机械应力的作用,会逐渐出现凹凸不平和变形,这会导致触头压力和接触电阻发生变化,进而改变 OLTC 的振动特性。通过 AFV 传感器对 OLTC 的振动信号进行持续监测和分析,我们可以实时掌握触头的状态。一旦发现振动信号出现异常变化,就可以判断出 OLTC 可能存在触头故障,及时采取措施进行处理,确保电力系统的安全稳定运行。杭州特高压GIS振动监测技术服务