在 OLTC 的运行过程中,AFV 信号分析法发挥着至关重要的作用。OLTC 切换瞬间,内部复杂的机械动作所产生的脉冲冲击力,会引发一系列振动传递现象。从内部机构到变压器油,再到变压器箱壁,每一个环节都承载着信号的传递与转换。通过对 AFV 信号的深入监测,我们能够洞察 OLTC 切换时间的微妙变化。若切换时间超出正常范围,可能意味着内部机械结构出现磨损或卡顿,这将严重影响 OLTC 的正常工作,而 AFV 信号分析法能够及时发现此类隐患,为设备维护提供有力支持。GZAFV-01型声纹振动监测系统的基本功能。振动声纹监测维修

OLTC 的正常运行对电力系统的稳定性至关重要,而 AFV 信号分析法是保障其稳定运行的重要工具。OLTC 在切换过程中,内部机械部件的运动撞击和摩擦会产生复杂的振动信号,这些信号蕴含着丰富的设备健康信息。通过 AFV 传感器监测这些信号,我们可以实时了解 OLTC 的工作状态。例如,当 OLTC 出现弹簧弹性下降的故障时,其振动信号的阻尼特性会发生改变,信号的衰减速度与正常状态不同。借助 AFV 信号分析法,我们能够准确捕捉到这些细微变化,及时发现故障隐患,采取针对性的维修措施,确保 OLTC 始终处于良好的运行状态。高压开关振动声纹监测图谱杭州国洲电力科技有限公司振动声学指纹在线监测技术的政策支持背景。

变压器运行时,电流通过绕组时产生的电动力引起绕组振动,硅钢片的磁致伸缩及硅钢片接缝处与叠片之间的漏磁导致铁芯振动。由于绕组导体所受电动力正比于负载电流的平方,绕组的声纹振动信号的基频为100Hz。由于变压器中磁感应强度正比于加载电压的平方,铁芯的声纹振动信号的基频也为100Hz。另外,考虑到铁芯振动的非线性特性,声纹振动信号还会包含频率为100Hz整数倍的高次谐波。当变压器的绕组变形或铁芯故障后,声纹振动信号频谱分布将发生改变,产生谐波分量。因此,信号分量可以作为区别绕组故障与铁芯故障的重要依据,采用声纹振动监测法可实现绕组及铁芯在线运行状态下的健康态势评价与故障类型诊断。
OLTC 的安全稳定运行对电力系统至关重要,AFV 信号分析法是保障其运行的有力手段。OLTC 切换时,内部机械部件的运动撞击和摩擦产生的脉冲冲击力,通过变压器油传递到变压器箱壁,形成振动信号。这些信号中蕴含着 OLTC 的机械状态信息,如触头的接触情况、弹簧的弹性等。通过 AFV 传感器对这些信号的监测和分析,我们可以实时了解 OLTC 的运行状态。当 OLTC 出现故障时,如触头接触不良或弹簧弹性下降,振动信号会呈现出特定的变化模式。利用这些模式,我们可以快速准确地诊断出故障类型,采取相应的维修措施,确保 OLTC 的正常运行,保障电力系统的安全稳定。杭州国洲电力科技有限公司振动声学指纹在线监测技术的行业应用背景。

能量分布曲线
基于小波变换的声纹振动信号多分辨率分析结果如下图3.8所示。原始信号经8层分解后产生第8层的近似分量和第1层至第8层的详细分量,计算各层详细分量信号能量,可获得信号能量分布曲线。比对正常状态与异常状态能量分布曲线,可判断OLTC运行状态,并提取互相关系数、最大值、平均值、峰度、偏度作为状态诊断特征参量。下图3.7为正常与异常状态的声纹振动信号能量分布曲线比对。
时频能量分布矩阵(ATF图谱)
获取声纹振动信号的时频能量分布矩阵,同时反映原始信号时域、频域特性及能量分布。将信号时频分布矩阵分为6个区间,计算各区间平均值作为特征参量,用于OLTC正常状态与异常状态比对。下图3.9为正常状态下声纹振动信号时频能量矩阵。 GZAFV-01型声纹振动监测系统(变压器、电抗器)的评价和维护建议。GZAF-1000T系列电抗器振动振动销售方法
杭州国洲电力科技有限公司的企业文化与社会责任。振动声纹监测维修
4.1.9智能分析功能:软件内置典型故障特征的数据库,可与监测数据进行比对,通过信号波形、时间长度和幅值等特征值,诊断分析故障类型;也可添加新监测数据,方便后期横向、纵向比较;可将同一厂家同一型号的正常监测数据导入保存,便于对该厂家、型号的变压器监测数据曲线进行比对分析。4.1.10具有报表分析功能,自动计算并保存重合度、动作时间、能量分布、电流最大值、电流平均值、绕组及铁芯振动峰值频率、总谐波畸变率、基频能量比、互相关系数等特征参量,并生成分析报表。4.2智慧化功能4.2.1具备边缘计算能力,就地采集并处理声纹振动信号及驱动电机电流信号,完成OLTC信号包络、ATF图谱等分析,完成绕组及铁芯振动信号频谱分析及参数计算,根据传输层要求统一通讯接口及数据结构,根据平台层及应用层要求上传分析结果。振动声纹监测维修