在运用 AFV 信号分析法判断 OLTC 状态时,要充分考虑 OLTC 运行环境对信号的影响。OLTC 通常在复杂的电磁环境和温度变化条件下运行,这些环境因素可能会对其振动信号产生干扰。例如,高温环境可能会导致变压器油的粘度发生变化,从而影响脉冲冲击力的传递特性,使振动信号的幅值和频率发生改变。此外,电磁干扰也可能会在振动信号中引入噪声,影响信号的准确性。因此,在采用 AFV 信号分析法时,需要采取相应的抗干扰措施,如滤波处理、屏蔽技术等,确保采集到的振动信号能够真实反映 OLTC 的运行状态,提高故障诊断的准确性。杭州国洲电力科技有限公司相关振动监测的报告。国产振动联系人

AFV 信号分析法的关键在于准确监测 OLTC 的 AFV 信号,从而获取其状态数据和工作模式。OLTC 切换时产生的脉冲冲击力,如同设备运行状态的 “信使”,通过变压器油和静触头传递到变压器箱壁,形成具有特定特征的振动信号。我们利用 AFV 传感器对这些信号进行采集和分析,能够获取 OLTC 的切换时间、触头状态等重要信息。当 OLTC 出现触头磨损故障时,其振动信号的频谱会发生明显变化,某些特定频率的幅值会增大。通过对这些信号特征的识别和分析,我们可以迅速判断出 OLTC 的故障类型,为设备的维护和检修提供明确方向。智能化振动设备杭州国洲电力科技有限公司振动声学指纹在线监测技术系统的兼容性分析。

3.2.1.1OLTC监测与诊断:=1\*GB3①采用多路振动传感器获取振动信号,传感器通过固定底座安装在变压器外壁,安装位置通常选取平行于分接开关垂直传动杆方向,且尽量靠近分接开关触头组处。=2\*GB3②采用非接触方式安装在OLTC的1~2m范围内的声纹传感器获取OLTC切换时的声纹信号。=3\*GB3③采用安装于驱动电机电源线处的电流传感器获取OLTC驱动电机电流信号。3.2.1.2变压器本体(绕组及铁芯)监测与诊断:=1\*GB3①采用多路振动传感器监测与诊断变压器绕组及铁芯运行状况,通常安装于上夹件底部、非冷却器侧油箱表面中部及油箱顶部中芯点。为保持监测与诊断点同一性,便于历史数据对比,传感器底座应长期固定在变压器外壁上。=2\*GB3②采用声纹传感器获取变压器声纹信号,传感器采用工装固定在变压器周边立柱或防火墙上,距地面高度1.2m以上、1/2油箱高度以下,与变压器距离0.3m~2m之间。
在 OLTC 的状态监测领域,AFV 信号分析法具有独特的优势。OLTC 切换时,内部机构部件的运动撞击和摩擦产生的脉冲冲击力,通过变压器油和静触头传递到变压器箱壁,形成具有特定频率和幅值特征的振动信号。这些信号如同设备运行状态的 “密码”,通过 AFV 传感器采集并运用专业的信号处理算法进行分析,我们可以解读出 OLTC 的工作模式和状态数据。例如,当 OLTC 出现电弧故障时,其振动信号会呈现出高频、高幅值的特征,与正常运行状态下的信号有明显区别。利用 AFV 信号分析法,我们能够快速准确地判断出 OLTC 的故障类型,为设备的维护和管理提供科学依据。杭州国洲电力科技有限公司振动声学指纹在线监测技术的实际应用价值。

ZAFV-01T子系统采用小型化设计,集成式架构,单元内综合电机电流及AFV的信号监测功能,可监测OLTC的完整动作过程和振动状况;可外接电流传感器(CT卡钳式),获取电机电流信号。装置提供RS485接口,对外通信和传送监测数据。GZAFV-01T子系统包括数据服务器,通信模块、AFV、电流传感器,数据采集模块,供电模块。通过吸附在变压器外壁上的3个AFV传感器获取AFV信号和1个电流传感器获取驱动电机电流信号,经现场的IED通过4G/5G无线传送模块传送至平台层数据服务器进行存储,通过操控及监测数据分析软件进行在线监测及诊断分析。GZAFV-01型声纹振动监测系统的概述。智能化振动案例
杭州国洲电力科技有限公司振动声学指纹在线监测功能的实时数据分析能力。国产振动联系人
其中,l**信号递归图中斜对角线的长度,P(l)**对角线长度为l的对角线的条数,Im**斜对角线的最小长度。DET值是一个介于0和I之间的数,对于正常运行的GIS而言,其机械结构确定性很高,其DET值接近1。(6)能量相似度(EDR):能量相似度分析用于衡量不同负载条件下各个监测点的振动能量相似性,振动能量分布特性的改变能够反映GIS内部机械结构的变化,其定义的公式如下:EDR=1Mi=1Mvi-μ×100%其中,vi为各频率信号归一化能量,μ为能量平均值。能量相似度分析通过对比测量信号的能量与目标能量差异来判断GIS振动是否异常。当某个测点的EDR值突然变大,这意味着该测点附近的机械结构可能出现异常。国产振动联系人