4.2.3根据各时频信号互相关系数、能量分布曲线特征参量(互相关系数、最大值、平均值、峰度、偏度)、ATF图谱特征参量(六等分区间均值)、总谐波畸变率、基频信号能量比等状态量,采用深度学习算法,自动判断变压器运行状态及机械故障类型。
4.2.4结合变压器的带电监测、智能巡检以及其他在线监测状态量,进行数据的多参量融合分析,形成基于多源数据的故障预警机制,多参量融合分析不仅提高了识别故障的准确性,而且还能**降低因单个参量判别故障带来的误报。例如,对于变压器疑似问题地诊断可结合负荷、损耗、绕组机械振动信号、油温、以及历史电流电压情况分析,在监测到变压器地声纹振动频谱时,GZAFV-01系统的操控及监测数据分析系统可以自动去查询变压器地历史电流和电压信号,如果发现在某段时期确实有大电流冲击,可给出预警:变压器可能存在绕组变形地异常。 GZAF-1000T系列变压器(电抗器)振动声学指纹监测信号分析与处理。GIS振动声学指纹在线监测监测示意图
3.2.1感知层的传感器GZAFV-01系统的感知层如上图3.1所示,由IED/主机、6路声纹振动传感器、1路电流传感器等构成,声纹振动传感器集成电荷放大器,将声纹振动信号转换成与之成正比的电压信号;电流传感器采用微型卡扣结构,便于现场安装。各传感器外观及参数如下表1所示。◆3路声纹振动传感器采集取OLTC振动信号,通过固定底座安装在变压器外壁,安装位置选取平行于OLTC的垂直传动杆方向,且尽量靠近OLTC的触头组处。◆1路电流传感器采集OLTC驱动电机电流信号,安装于OLTC驱动电机电源线处。◆3路声纹振动传感器采集变压器绕组及铁芯声纹振动信号,安装位置选取于上夹件底部、非冷却器侧油箱表面中部、油箱顶部中心点。为保持监测点的同一性,便于后期监测数据的时间轴线比对,所有声纹振动传感器底座长期固定在变压器外壁上。安装示意图如下图3所示。(备注:传感器安装的数量及位置可根据被测设备的监测需求而灵活调整)国洲电力振动声学指纹在线监测监测维修GZAF-1000T系列变压器(电抗器)振动声学指纹监测绕组及铁芯运行状态分析。
3.3.1.3能量分布曲线基于小波变换的声纹振动信号多分辨率分析结果如下图3.8所示。原始信号经8层分解后产生第8层的近似分量和第1层至第8层的详细分量,计算各层详细分量信号能量,可获得信号能量分布曲线。比对正常状态与异常状态能量分布曲线,可判断OLTC运行状态,并提取互相关系数、最大值、平均值、峰度、偏度作为状态诊断特征参量。下图3.7为正常与异常状态的声纹振动信号能量分布曲线比对。
3.3.1.4时频能量分布矩阵(ATF图谱)获取声纹振动信号的时频能量分布矩阵,同时反映原始信号时域、频域特性及能量分布。将信号时频分布矩阵分为6个区间,计算各区间平均值作为特征参量,用于OLTC正常状态与异常状态比对。下图3.9为正常状态下声纹振动信号时频能量矩阵。
变压器在生产、运输、安装过程中或在短路电流作用下,均会使绕组及铁芯压紧程度降低,绕组及铁芯故障分别约占变压器整体故障的36%和4%,对变压器抗短路电流冲击能力及安全稳定运行产生巨大威胁。绕组故障主要包括绝缘老化、受潮、匝间或绕组间短路、断路及机械损伤等,以上故障类型均可能导致绕组变形。传统的绕组变形监测方法有低压脉冲法(LVI)、频率响应分析法(FRA)和短路阻抗法(SCI),以上方法*适用于离线或停电监测。铁芯典型故障包括压铁松动、接地不良、夹件松动或损伤,常用监测方法包括绝缘电阻测试及接地电流监测。GZAF-1000S系列高压开关振动声学指纹监测系统--GIS本体监测技术背景。
杭州国洲电力科技有限公司截止到目前已获授权的发明专利2项,实用新型专利23项,软件著作权7项,已过受理及审核而待授权的另计;在国内外核心期刊已发表的论文18篇;参与制定的行业标准2项;并与海内外**的专业院校、设备制造等单位建立了稳固的技术交流和共研机制。我公司始至秉持《始于专注、精于品质、久于信任、终于共赢》的经营理念追求创新,***、深度的应用大数据、云计算、机器学习、人工智能、物联网等新技术,决心塑造为综合智慧能源服务领域“民族创新智造”的先行者、**者和专注者,并在公司发展进程中为社会、合作方、员工和资方创造更大的价值。GZAF-1000T系列变压器(电抗器)振动声学指纹监测包络分析。国洲电力振动声学指纹在线监测监测维修
GZAF-1000T系列变压器(电抗器)振动声学指纹监测系统结构。GIS振动声学指纹在线监测监测示意图
4.2智慧化功能4.2.1具备边缘计算能力,就地采集并处理声纹振动信号及驱动电机电流信号,完成OLTC信号包络、ATF图谱等分析,完成绕组及铁芯振动信号频谱分析及参数计算,根据传输层要求统一通讯接口及数据结构,根据平台层及应用层要求上传分析结果。4.2.2具备实物ID管理功能,提供OLTC、绕组及铁芯运行状态信息链接入口,可扫码读取设备在线监测历史数据及趋势。通过扫码或RFID识别设备,读取设备ID信息,通过站内网络(4G/5G/WIFI)传输给云端服务器,向服务器请求该设备的详细信息,以及详细的运行状态,测试信息等。GIS振动声学指纹在线监测监测示意图