企业商机
脱靶检测基本参数
  • 品牌
  • 唯可生物
  • 型号
  • 齐全
  • 适宜人群
  • 基因编辑药企
  • 不适宜人群
脱靶检测企业商机

由于设计的sgRNA会与非靶点DNA序列错配,引入非预期的基因突变,即脱靶效应(Off-targeteffects)。脱靶效应造成了研究中的许多不确定性,这无疑限制了该技术的应用。因此,研究者希望能开发有效的方法来检测脱靶效应。在目前主流的脱靶效应评估方法中,有一种方法为GUIDE-seq,其原理是利用一种短的双链寡聚核苷酸(dsODN)标记CRISPR/Cas诱导的脱靶断裂,然后对标签所在的基因组区域进行高通量测序,通过生物信息学分析从而确定脱靶位点。利用该技术可以在基因组范围内检测CRISPR脱靶效应,从而改变了以往先预测假定脱靶位点再检测的思路;与其他的评估方法相比,GUIDE-seq更精确、更灵敏。内基因编辑技术可能造成的脱靶效应。北京基因编辑技术脱靶检测方法

北京基因编辑技术脱靶检测方法,脱靶检测

持续ganran,有复制能力的病毒或细菌载体基因zhiliao产品,有可能在免疫能力低下的患者中发展为持续ganran,进一步增加发生迟发但严重ganran的风险。基因编辑活性,基因编辑等新型基因zhiliao产品有独特的基因组修饰功能,可诱导人类基因组中的位点特异性改变或修饰,同时也可能在基因组中发生脱靶效应,导致非预期的基因表达变化,进而增加未知且不可预测的迟发性不良反应风险。非预期的生物分布,某些基因zhiliao产品需要在特定的细胞或组织中表达以实现zhiliao目的,如果基因zhiliao产品在非预期的细胞、组织或qiguan中表达或修饰,可能引起非靶细胞功能、生长或/分化改变,甚至引发liu。江苏crispr/cas9脱靶检测评估脱靶检测服务,推荐唯可生物,实验实力强,专业性高,检测效率高,结果准确率高。

北京基因编辑技术脱靶检测方法,脱靶检测

改进Cas变体使用SpCas9和SaCas9 变体:已研发出诸如SpCas9-Nickase、dCas9 、dCas9–FokI、xCas9、Cas9-NG、evoCas9、SpCas9 – HFI、eSpCas9和Hypa-Cas9等多种Cas变体,可降低脱靶效应。改进的Cas9同源物具有更广的PAM功能和特异性:实验表明Cpf1、CRISPR-Cpf1-RNP可降低脱靶效应。CRISPR 递送方法:基于病毒的递送方法:腺病毒 (AdV) 显示出整合到靶细胞基因组中的微弱潜力,这一特征有利于限制脱靶效应。然而,AdVs 会引发免疫反应,目前还不能完全排除它与宿主基因组整合的可能性。非病毒递送方法:当sgRNA和Cas9以RNP复合物形式传递时,电穿孔显示植物原生质体中的脱靶突变数量很低。通过脂质体介导的转染传递RNP复合物显示,与质粒DNA转染相比,脱靶突变的发生率较小。

如何检测脱靶效应?在gRNA修饰中,截短的sgRNA是一种减少脱靶效应的简单方法,并且基于RNP的递送在大多数情况下适用于获得更高的目标活性。此外,选择合适的Cas变体对于减少脱靶效应也至关重要。但选择合适的脱靶检测工具,也是重中之重。脱靶预测结合PCR检测法,利用脱靶预测软件预测潜在的脱靶位点,PCR扩增预测的脱靶位点,利用直接测序或酶切法检测脱靶情况。操作简便、成本低偏倚性预测。全基因组测序,一种通过高通量测序检测脱靶突变的方法,需要选择适当的参考基因组过滤背景突变,数据比对分析获得含有PAM基序的潜在修饰位点,进一步基因扩增验证其突变情况。高通量全基因组范围检测可检测SNPs,Indels和染色体水平变化。脱靶检测安评,推荐唯可生物,实验实力强,专业性高,检测效率高,结果准确率高。

北京基因编辑技术脱靶检测方法,脱靶检测

BLESS:利用生物素标签对DSBs进行原位标记,后经PCR扩增实现对于生物素标记片段的富集,并通过二代测序实现脱靶位点检测。直接检测细胞中的切割位点,灵敏度与细胞、组织密切相关。LAM-HTGTS,片段化的gDNA经过LAM-PCR引入接头,然后进行全基因组易位测序。高通量的全基因组范围检测,可准确检测DSBs引发的重排。GUIDE-Seq,将dsODN    s标签整合到DSBs位点,通过二代测序检测这些标签所在的基因组区域,从而确定脱靶突变的位置。广使用的细胞内检测方法。能检测低频脱靶突变。Digenome-Seq,片段化的gDNA与CRISPR/RNP混合孵育,进行全基因组测序检测脱靶。全基因组测序,直接检测切割位点,能检测低频脱靶突变。内基因编辑技术可能造成的脱靶效应,建立了一种被命名为GOTI。江苏crispr/cas9脱靶检测评估

针对已经获得的有切割能力的sgRNA,需要进一步明确其体内脱靶效应。北京基因编辑技术脱靶检测方法

碱基编辑器:CBE:胞嘧啶碱基编辑器(Cytosine base editor,CBE),依赖于胞嘧啶核苷脱氨基酶,通过将胞嘧啶核苷脱氨转换为尿嘧啶核苷,尿嘧啶核苷在DNA复制和修复过程中会转换为胸腺嘧啶核苷,从而实现C到T的转换。已开发出四代CBE(BE1、BE2、BE3和BE4),由于BE3引起的脱靶效应相对较少,因此它已在动物(小鼠)、细菌和植物细胞中广用于编辑细胞的基因组成。腺嘌呤碱基编辑器(Adenine base editor,ABE),依赖于腺嘌呤核苷脱氨基酶,通过将腺嘌呤核苷脱氨转换为次黄苷,然后在DNA复制和修复过程中会转换为鸟嘌呤核苷,从而实现腺嘌呤(A)到鸟嘌呤(G)的转换。新开发的碱基编辑器ABE8e,比ABE7.10增加了590倍的靶向活性。北京基因编辑技术脱靶检测方法

脱靶检测产品展示
  • 北京基因编辑技术脱靶检测方法,脱靶检测
  • 北京基因编辑技术脱靶检测方法,脱靶检测
  • 北京基因编辑技术脱靶检测方法,脱靶检测
与脱靶检测相关的**
信息来源于互联网 本站不为信息真实性负责