氧化石墨烯基纳滤膜水通量远远大于传统的纳滤膜,但是氧化石墨烯纳滤膜对盐离子的截留率还有待提高。Gao等26利用过滤法在氧化石墨烯片层中间混合加入多壁碳纳米管(MWCNTs),复合膜的通量达到113L/(m2.h.MPa),对于盐离子截留率提高,对于Na2SO4截留率可达到83.5%。Sun等27提出了一种全新的、精确可控的基于GO的复合渗透膜的设计思路,通过将单层二氧化钛(TO)纳米片嵌入具有温和紫外(UV)光照还原的氧化石墨烯(GO)层压材料中,所制备的RGO/TO杂化膜表现出优异的水脱盐性能。GO表面的各种官能团使其可与生物分子直接相互作用,易于化学修饰。鹤岗官能化氧化石墨

光学材料的某些非线性性质是实现高性能集成光子器件的关键。光子芯片的许多重要功能,如全光开关,信号再生,超快通信都离不开它。找寻一种具有超高三阶非线性,并且易于加工各种功能性微纳结构的材料是众多的光学科研工作者的梦想,也是成功研制超高性能全光芯片的必由之路。超快泵浦探针光谱表明,重度功能化的具有较大SP3区域的GO材料在高激发强度下可以出现饱和吸收、双光子吸收和多光子吸收[6][50][51][52],这种效应归因于在SP3结构域的光子中存在较大的带隙。相反,在具有较小带隙的SP2域中的*出现单光子吸收。石墨烯在飞秒脉冲激发下具有饱和吸收[52],而氧化石墨烯在低能量下为饱和吸收,高能量下则具有反饱和吸收[51]。因此,通过控制GO氧化/还原的程度,实现SP2域到SP3域的比例调控,可以调整GO的非线性光学性质,这对于高次谐波的产生与应用是非常重要的。鹤岗官能化氧化石墨氧化石墨仍然保留石墨母体的片状结构,但是两层间的间距(约0.7nm)大约是石墨中层间距的两倍。

由于GO表面具有较高的亲和力,蛋白质可以吸附在GO表面,因此在生物液体中可以通过蛋白质来调节GO与细胞膜的相互作用。如,血液中存在着大量的血清蛋白,可能会潜在的影响GO的毒性。Ge与其合作者[16]利用电子显微镜技术就观察到牛血清蛋白可以降低GO对细胞膜的渗透性,抑制了GO对细胞膜的破坏,同时降低了GO的细胞毒性。基于分子动力学研究分析,他们推断可能是由于GO-蛋白质之间的作用削弱了GO-磷脂之间的相互作用。与此同时,GO对人血清蛋白的影响也被其他科研工作者所发现,特别是他们观察到了GO可以抑制人血清蛋白与胆红素之间的作用。因此,GO与血清蛋白之间是相互影响的。
所采用的石墨原料片径大小、纯度高低等以及合成GO的方法不同,因此导致所合成出来的GO片的大小、片层厚度、氧化程度(含氧量)、表面电荷和表面所带官能团等不同。GO的生物毒性除了有浓度依赖性,还会因GO原料的不同而呈现出毒性数据的多样性,甚至结论相互矛盾[2-9]。此外,GO可能与毒性测试中的试剂相互作用,从而影响细胞活性试验数据的有效性,使其产生假阳性结果。如:Macosko与其合作者[10]的研究发现,在细胞活性试验中利用四甲基偶氮唑盐(MTT)试剂与GO作用,GO的存在可以减少蓝色产物的形成。因为在活细胞中,当MTT减少时就说明有同一种颜色产物的生成。因此,基于MTT法试验未能体现出GO的细胞毒性。但是他们利用另一种水溶性的四唑基试剂——WST-8(台酚蓝除外),就能对活细胞和死细胞的数量进行精确的评估。常州第六元素公司可以生产多个型号的氧化石墨。

石墨烯可与多种传统半导体材料形成异质结,如硅[64][65][66],锗[67],氧化锌[68],硫化镉[69]、二硫化钼[70]等。其中,石墨烯/硅异质结器件是目前研究**为***、光电转换效率比较高(AM1.5)的一类光电器件。基于硅-石墨烯异质结光电探测器(SGPD),获得了极高的光伏响应[71]。相比于光电流响应,它不会因产生焦耳热而产生损耗。基于化学气象沉积法(CVD)生长的石墨烯光电探测器有很多其独特的优点。首先有极高的光伏响应,其次有极小的等效噪声功率可以探测极微弱的信号,常见的硅-石墨烯异质结光电探测器结构如图9.8所示。GO制备简单、自身具有受还原程度调控的带隙,可以实现超宽谱(从可见至太赫兹波段)探测。鹤岗官能化氧化石墨
当超过某上限后氧化石墨烯量子点的性质相当接近氧化石墨烯。鹤岗官能化氧化石墨
GO膜在水处理中的分离机理尚存在诸多争议。一种观点认为通过尺寸筛分以及带电的目标分离物与纳米孔之间的静电排斥机理实现分离,如图8.3所示。氧化石墨烯膜的分离通道主要由两部分构成:1)氧化石墨烯分离膜中不规则褶皱结构形成的半圆柱孔道;2)氧化石墨烯分离膜片层之间的空隙。除此之外,由氧化石墨烯结构缺陷引起的纳米孔道对于水分子的传输提供了额外的通道19-22。Mi等23研究认为干态下通过真空过滤制备的氧化石墨烯片层间隙的距离约为0.3nm。鹤岗官能化氧化石墨