在典型的三甲基氢醌方法中,将LBA(300mL),TMBQ(30g)和Pd/C催化剂(0.71g)加入KCFD05-10高压釜中,并在室温下用氢气(0.3MPa)反复吹扫。通过控制内部盘管中的加热速率和冷却水的流速,将反应温度保持在90℃,搅拌速度控制在800rpm,并通过间歇地供应氢气来控制氢气压力在0.5和0.6MPa之间。当氢气压力在没有供应氢气的情况下保持不变10min时,认为反应已经完成。将反应混合物在90℃下保温30min后,过滤以除去催化剂。将滤液在180℃下蒸馏除去70-80%的溶剂,然后加入120g水。白色或类白色晶体,受热升华、受潮易变黑。福建三甲基氢醌生产企业

采用循环伏安法和电解合成法将偏三甲苯在Ti/nano-TiO-Pl电极_上直接电解合成三甲基苯醌。在离子隔膜电解槽中,电解合成TMBQ的电流效率为47%,偏三甲苯的总转化率为58.8%。偏三甲苯直接氧化法:偏三甲苯直接氧化法与电解法同为两步反应。偏三甲苯直接氧化法是在催化剂和氧化剂的共同作用下,通过一步反应将偏三甲苯氧化为TMBQ,然后再加氢还原转化为TMHQ。该工艺过程简单,设备投资少,采用的氧化剂多为H2O2或过氧乙酸,符合绿色反应工艺的要求。偏三甲苯氧化反应的技术关键是氧化剂和催化剂的选取,这是造成TMBQ的产率以及后续的分离存在较大差异的主要原因。江西235三甲基氢醌溶于热水,受热或暴露于空气中易氧化变色。

使用溶剂甲基叔丁基醚,总收率也低并且溶剂易于炸裂。我们发现,在实验中,过滤的反应混合物的颜色很容易从亮变为暗。这表明甲基叔丁基醚溶剂中的三甲基氢醌在暴露于空气时更容易被氧化。此外,三甲基氢醌在甲基叔丁基醚中表现出更大的溶解度。因此,难以将TMHQ和溶剂分离,这可能是总摩尔产率低的另一个可能原因。乙酸乙酯可用于氢化,但由于其水解作用,除水是必要的。但是,使用溶剂LBA得到氢化摩尔产率为99.4%,总分离摩尔产率为96.7%。虽然LBA也含有酯,但不必除去水。
较高氢气压力的苛刻反应条件使选择性下降,而且还增加了设备要求和生产成本。结果表明氢气压力为0.5-0.6MPa是合适的。催化剂的再利用:用新鲜催化剂在1小时内获得96.6%的分离摩尔产率。对于随后的运行,每回合补充0.35g新鲜催化剂。从第四次催化剂再利用中回收了LBA。催化剂在重复使用前用LBA溶剂清洗。值得注意的是,在催化剂的再利用研究过程中,为了得到较高的三甲基氢醌分离摩尔产率,反应时间明显延长。对于第三次重复使用,反应时间显着延长至6.3小时。然而,自第三次重复使用后,反应时间保持在约7h。三甲基氢醌的合成方法,重点介绍了1,2,4-三甲基路线和苯酚路线。

值得注意的是,在较低的70℃温度下,加氢速度减慢,反应时间随着反应温度从70℃提高到80℃而明显缩短,随着温度从80℃提高到110℃,所需的反应时间几乎没有变化。反应体系的温度在某种程度上是分子动能的度量。反应温度的升高通常会导致更高能的分子和碰撞,特别是在这里它促进了建议机制中的解吸步骤。考虑到氢化产率和反应时间,加氢反应的适宜温度为90℃。催化剂负载的影响:当催化剂负载量从0.6%w/w(0.53g)变化到1.0%w/w(0.88g)时,三甲基氢醌的转化率几乎没有变化。由1,2,4-三甲苯经磺化、硝化、还原、氧化得到三甲基氢醌。南昌2 3 5三甲基氢醌
三甲基氢醌( 2,3,5-三甲基对苯二醌,TMHQ) 为白色或类白色晶体,是工业合成维生素E 的重要中间体。福建三甲基氢醌生产企业
发现当三甲基氢醌反应在7h内完成并且分离的摩尔产率几乎与新鲜催化剂的相同时,催化剂至少可以使用至少11次。溶剂的影响:使用相同的新鲜催化剂(D5H1)研究了该反应的各种溶剂。当使用甲醇,乙醇或异丙醇作为溶剂时,三甲基氢醌的总摩尔产率相对较低。原因可能是由于它们的与水的混溶性而难以除去这些溶剂。此外,甲醇确实使TMHQ更容易被卡其色的颜色染色。此外,由于沸点低,甲醇和乙醇的回收率很低。至于异丁醇,氢化摩尔产率为89.1%相对较低,这可能是由于其高粘度导致的传质阻碍。福建三甲基氢醌生产企业