在生物技术的微观世界中,限制性核酸内切酶是基因工程的关键工具之一,而AluI则是其中一位“微雕大师”。它以其独特的识别序列和切割方式,在基因工程、分子生物学研究以及遗传学等领域发挥着重要作用。AluI的识别序列是“AG^CT”,这一序列在基因组中相对常见,使得AluI能够在多个位点进行切割。它会在识别到该序列后,在“^”标记的位置将DNA链切断,产生黏性末端。这种切割方式使得AluI在基因克隆和重组DNA构建中具有独特的优势。在基因工程中,AluI的应用极为广。科学家可以利用它将目标基因从复杂的基因组中精细地分离出来,再通过DNA连接酶将切割后的基因片段与载体DNA连接起来,构建出能够高效表达目标蛋白的重组载体。这一过程不仅需要精细的切割,还需要切割后的片段能够完美匹配,而AluI的黏性末端特性正好满足了这一需求。AluI的另一个重要应用是基因分析。通过观察AluI对不同DNA样本的切割模式,科学家可以分析基因的多态性,进而推断出基因的结构和功能差异。这种技术在遗传病诊断和基因多样性研究中具有重要意义。例如,在某些遗传病的研究中,AluI可以用来检测基因突变,帮助科学家更好地理解疾病的遗传机制。CRISPR-Cas12a(以前称为Cpf1)是一种类II型V型内切酶,偏好富含胸腺嘧啶的原间隔短回文重复序列邻近基序。AccI

在基因工程的微观世界中,限制性核酸内切酶是科学家们手中的重要工具,而ApaLI便是其中一位“精细刻刀”。它以其独特的识别序列和精细的切割能力,在基因克隆、基因分析以及分子生物学研究中发挥着关键作用。ApaLI的识别序列是“G^TGCAC”,这一序列在DNA中相对罕见,使得ApaLI能够在特定位置进行切割。它会在“^”标记的位置将DNA链切断,产生黏性末端。这种黏性末端的特性使得ApaLI在基因克隆和重组DNA构建中具有独特的优势。在基因工程中,ApaLI的应用极为广。科学家可以利用它将目标基因从复杂的基因组中精细地分离出来,再通过DNA连接酶将切割后的基因片段与载体DNA连接起来,构建出能够高效表达目标蛋白的重组载体。这一过程不仅需要精细的切割,还需要切割后的片段能够完美匹配,而ApaLI的黏性末端特性正好满足了这一需求。ApaLI的另一个重要应用是基因分析。通过观察ApaLI对不同DNA样本的切割模式,科学家可以分析基因的多态性,进而推断出基因的结构和功能差异。这种技术在遗传病诊断和基因多样性研究中具有重要意义。例如,在某些遗传病的研究中,ApaLI可以用来检测基因突变,帮助科学家更好地理解疾病的遗传机制。Recombinant Biotinylated Human IL-3 Protein,His-Avi Tag激发的泛素被转移到泛素结合酶E2的活性位点半胱氨酸残基上,形成E2-泛素硫酯中间体。

SETD7(SETdomaincontaining7)是依赖S-腺苷甲硫氨酸的组蛋白H3K4特异性甲基转移酶,亦催化p53、TAF10等非组蛋白底物,在干细胞维持、代谢重编程及病抑制网络中扮演“表观开关”角色。本品以昆虫细胞-杆状病毒系统表达全长催化域(aa1-366),保留天然折叠与辅因子结合口袋;N端6×His标签经Ni²⁺-NTA、离子交换两步纯化,SDS-PAGE与SEC-MALS显示单体均一,纯度≥98%;内素<0.05EU/μg,适配体外酶活、晶体学与细胞转染。功能验证:在标准甲基化体系中,100nMSETD7可在30min内将H3(1-21)肽段K4位单甲基化提升至85%,Km(SAM)=0.9μM;ITC测定其辅因子结合热力学ΔH=-8.6kcal/mol,结构模型与PDB1O9S重叠RMSD<0.5Å。His标签兼容SPR、AlphaLISA及Pull-down,可高通量筛选SAM竞争性抑制剂或底物模拟肽,加速糖尿病、病表观治先导化合物的发现。该重组蛋白为解析SETD7底物谱、开发位点特异性甲基化调控策略提供了高活性、可规模化的研究级试剂。
重组人Tenascin蛋白(His Tag)是一种在哺乳动物细胞中表达的重组蛋白,融合了His标签,便于纯化和检测。Tenascin是一种大型细胞外基质糖蛋白,广参与细胞黏附、迁移、增殖和分化等生物学过程,在胚胎发育、组织修复和瘤发生中发挥重要作用。Tenascin的功能与机制Tenascin通过其多个结构域(如EGF样结构域、纤维素样结构域)与其他细胞外基质蛋白(如胶原蛋白、纤连蛋白)相互作用,调节细胞外基质的组装和重塑。此外,Tenascin还通过与细胞表面受体(如整合素)结合,影响细胞的黏附、迁移和增殖。在胚胎发育过程中,Tenascin对身体形成和组织分化至关重要。在瘤发生中,Tenascin的异常表达与瘤的侵袭性和转移能力密切相关。重组人Tenascin蛋白(His Tag)的特点重组人Tenascin蛋白(His Tag)具有以下明显特点:高纯度:纯度≥95%(经SDS-PAGE和SEC-HPLC验证),确保实验结果的可靠性。低内素:内素水平<0.1 EU/μg,适合用于细胞实验和体内研究。功能完整:保留了天然Tenascin的结构域和细胞外基质相互作用功能。实验应用重组人Tenascin蛋白(His Tag)在多种实验中表现出色:流式细胞术:检测Tenascin在细胞表面或细胞外基质中的表达水平。它是一种限制性核酸内切酶,宛如一位精细的“裁缝”,专门在DNA分子上施展“剪裁”技艺。

在现代替物技术的舞台上,限制性核酸内切酶AccI是一位备受瞩目的“明星”。它是一种能够特异性识别并切割DNA的酶,凭借其精细的切割能力,在基因工程领域扮演着不可或缺的角色。AccI的识别序列是“GT^AC”,这意味着它会在DNA双链上找到这一特定的核苷酸序列,并在“^”标记的位置将DNA链切断。这种切割方式非常独特,它会产生黏性末端,即切割后的DNA片段两端会暴露出一段互补的单链区域。这种黏性末端的特性使得AccI在基因克隆和重组DNA技术中大显身手。在基因工程中,科学家们常常需要将目标基因从复杂的基因组中分离出来,并将其插入到合适的载体中。AccI可以像一把“精细刻刀”一样,将目标基因和载体DNA在特定位置切割,暴露出的黏性末端能够通过碱基互补配对的方式相互结合,再利用DNA连接酶将它们连接起来,从而构建出重组DNA分子。AccI的应用不仅局限于基因克隆,它还在基因分析和诊断中发挥着重要作用。通过AccI对DNA的切割模式,科学家可以分析基因的多态性,帮助诊断某些遗传性疾病。此外,AccI还可以用于构建基因文库,为研究基因功能和进化提供了重要的工具。AccI的发现和应用是分子生物学发展的重要里程碑。Probe qPCR Mix (2×)通常含有热启动DNA聚合酶,这种聚合酶在高温下激发,可以减少非特异性扩增 。Recombinant Cynomolgus TNFR2/CD120b/TNFR1B Protein,His Tag
在对亚硫酸氢盐转化后的DNA进行扩增时,Hot-Start Taq DNA Polymerase能够提供高特异性和高灵敏度的扩增效果。AccI
重组人Skp1蛋白(His-Avi Tag)是一种在哺乳动物细胞中表达的重组蛋白,融合了His和Avi双标签,便于纯化和高灵敏度检测。Skp1(S-phase kinase-associated protein 1)是SCF(Skp1-Cullin-F-box)泛素连接酶复合体的关键组分,广参与细胞周期调控、蛋白质降解和信号转导等生物学过程。Skp1的功能与机制Skp1是SCF复合体的关键组成部分,通过与F-box蛋白结合,招募特定的底物蛋白,进而促进其泛素化修饰和降解。这一过程在细胞周期的G1/S期转换、DNA损伤修复以及多种信号通路的调控中起着至关重要的作用。Skp1的功能异常与多种疾病的发长发展密切相关,包括病、神经退行性疾病和发育障碍等。重组人Skp1蛋白(His-Avi Tag)的特点重组人Skp1蛋白(His-Avi Tag)具有以下明显特点:高纯度:纯度≥95%(经SDS-PAGE和SEC-HPLC验证),确保实验结果的可靠性。低内素:内素水平<0.1 EU/μg,适合用于细胞实验和体内研究。双标签设计:His标签便于通过Ni-NTA磁珠进行快速纯化;Avi标签可在体外被BirA酶定点生物素化,结合链霉亲和素(Streptavidin)实现极高的检测灵敏度和特异性。AccI
在生物技术的微观世界中,限制性核酸内切酶是基因工程的关键工具之一,而AluI则是其中一位“微雕大师”。它以其独特的识别序列和切割方式,在基因工程、分子生物学研究以及遗传学等领域发挥着重要作用。AluI的识别序列是“AG^CT”,这一序列在基因组中相对常见,使得AluI能够在多个位点进行切割。它会在识别到该序列后,在“^”标记的位置将DNA链切断,产生黏性末端。这种切割方式使得AluI在基因克隆和重组DNA构建中具有独特的优势。在基因工程中,AluI的应用极为广。科学家可以利用它将目标基因从复杂的基因组中精细地分离出来,再通过DNA连接酶将切割后的基因片段与载体DNA连接起来,构建出能够高效表达...