黄淮海慢生根瘤菌(Bradyrhizobiumhuanghuaihaiense)对大豆产量的影响是明显的。它们与大豆共生,形成根瘤并固定大气中的氮气,对植物生长和土壤肥力有重要作用。以下是一些具体的研究结果和影响:1.**根瘤的形成与固氮能力**:黄淮海慢生根瘤菌能够侵害大豆根部,形成根瘤,并在根瘤内将大气中的氮气转化为植物可利用的氨态氮。这一转化过程使得大豆能够从空气中获得氮素资源,克服土壤中氮素资源不足的问题。2.**对大豆生长和产量的促进作用**:研究表明,黄淮海慢生根瘤菌共生对大豆的生长发育和产量具有影响。通过根瘤菌共生,大豆能够获得更多的氮素供给,从而促进植株的生长和发育。相比没有的根瘤菌的植株,根瘤菌共生的大豆植株通常具有更大的株高、更多的分枝以及更大的叶片面积。3.**氮素利用效率的提高**:黄淮海慢生根瘤菌共生能够增加大豆根系的表面积,提高根系的发达程度。这使得大豆根系能够更好地与土壤接触,吸收更多的水分和养分,包括氮素。此外,根瘤菌共生还能促进根系的分枝生长,增加根毛的数量和长度,进一步增强了大豆根系对氮素的吸收能力。
粘短波单胞菌具有高度的代谢灵活性,能够快速适应不断变化的条件,这对于大规模生物有特别价值 。三侧毛壳菌株
淡珊瑚色冷杆菌(Cryobacteriumlevicorallinum)是一种革兰氏阳性的嗜冷细菌,具有以下特点:1.**原产地**:这种细菌分离自中国新疆一号冰川的冰样本。2.**培养条件**:淡珊瑚色冷杆菌的培养温度为10℃,使用的培养基为0950。3.**全基因组序列**:该细菌的全基因组序列为FOPW00000000.1,这为研究其遗传特性提供了重要信息。4.**模式菌株**:淡珊瑚色冷杆菌是一种模式菌株,用于分类学研究、教学和研究目的。5.**生物危害程度**:它被归类为生物危害四类,因此在实验室中处理这种细菌时需要遵循特定的安全措施。6.**提供形式**:这种细菌以冻干物的形式提供,需要在特定的培养条件下复苏和培养。7.**主要用途**:淡珊瑚色冷杆菌主要用于研究和教学,特别是在嗜冷微生物的研究领域。8.**分离基物**:它的分离基物为冰,这表明它可能适应于寒冷环境。9.**需氧类型**:淡珊瑚色冷杆菌是一种好氧细菌,需要氧气进行生长。这些特性使得淡珊瑚色冷杆菌在微生物学研究中具有特殊的价值,尤其是在探索嗜冷微生物的适应机制和生态功能方面。江华岛类诺卡氏菌海洋微泡菌还显示出在海洋污染修复和活性物质提取方面的应用潜力。如,Microbulbifer hydrolyticus IRE-31。
巨大芽孢杆菌(Bacillusmegaterium)是一种革兰氏阳性细菌,具有以下特点:1.**形态特征**:巨大芽孢杆菌的菌体呈杆状,末端圆,单个或呈短链排列。大小约为1.2-1.5×2.0-4.0微米。它们能形成椭圆形的芽孢,中生或次端生,芽孢大小约为1.0-1.2×1.5-2.0微米。2.**培养特性**:巨大芽孢杆菌在营养琼脂培养基上形成不多于1个的抗热芽孢,为中生到端生,形状为椭圆形或圆形不等。菌落生长丰富,不扩展,有光泽或较暗,有时微皱,生长后期一般带黄色,长时间培养生长物和培养基可变成褐色或黑色。3.**应用价值**:巨大芽孢杆菌在工业上用于生产葡萄糖异构酶,并且在回收贵重金属方面有着重要作用。它们还能降解土壤中难溶的含磷化合物,使之成为作物能吸收的可溶物。巨大芽孢杆菌与球形芽孢杆菌混合培养时具有固氮增效作用,非常适合制成微生物肥料。4.**环境适应性**:巨大芽孢杆菌属于耐热嗜冷菌,也是兼性厌氧菌,能在不同的环境条件下生长,包括温暖的水中, 适生长温度为28℃,有些菌株在5℃也可生长,比较大生长温度为38-41℃。5.**生物防治作用**:巨大芽孢杆菌在植物病害生物防治中具有重要作用,能够产生拮抗性或竞争性的代谢产物,抑制病原菌生长或杀死病原菌。
抱川芽孢杆菌(Bacilluspocheonensis)是一种属于芽孢杆菌属(Bacillus)的细菌,具有以下特点:1.**形态特征**:-单个细胞大小约为0.7~0.8×2~3微米,着色均匀。-无荚膜,周生鞭毛,能运动。-革兰氏阳性菌,芽孢大小约为0.6~0.9×1.0~1.5微米,呈椭圆到柱状,位于菌体中间或稍偏,芽孢形成后菌体不膨大。-菌落表面粗糙不透明,呈污白色或微黄色。2.**生长特性**:-在25℃条件下,生长2天就能看见明显的菌落。3.**主要用途**:-主要用于研究,具体用途为潜在的有机污染物降解菌/分离自石油富集菌群。4.**培养条件**:-培养基编号为443/2,培养温度为30℃。5.**生物安全等级**:-抱川芽孢杆菌的生物安全等级为四类。6.**分离基物与采集地**:-分离自土壤和人参田,原产国为大韩民国。7.**Genbank序列号**:-16SrRNAgene:AJ811598。抱川芽孢杆菌因其在有机污染物降解方面的潜在应用而受到研究关注,尤其是在环境工程和生物修复领域。此外,燕麦的发酵可以增加肠道中有益微生物的增殖,如双歧杆菌,并且可以增加短链脂肪酸的产量。
光伏希瓦氏菌(Photobacteriumphotovoltaicum)是一种具有特殊光电转化能力的微生物,以下是关于它的一些详细信息:1.**微生物电化学系统中的应用**:光伏希瓦氏菌作为具有多种细胞外电子转移(EET)策略的异化金属还原模型细菌,在微生物电化学系统(MES)中用于各种实际应用以及微生物EET机理研究的广受欢迎的微生物。它可以在不同的MES设备中发挥作用,包括生物能、生物修复和生物传感。2.**生物光伏系统(BPV)**:中科院微生物所研究人员设计并创建了一个具有定向电子流的合成微生物组,其中就包括光伏希瓦氏菌。这个合成微生物组由一个能够将光能储存在D—乳酸的工程蓝藻和一个能够高效利用D—乳酸产电的希瓦氏菌组成。蓝藻吸收光能并固定CO2合成能量载体D—乳酸,希瓦氏菌氧化D—乳酸进行产电,由此形成一条从光子到D—乳酸再到电能的定向电子流,完成从光能到化学能再到电能的能量转化过程。3.**光电转化效率的提升**:研究人员通过创建双菌生物光伏系统,实现了高效稳定的功率输出,其最大功率密度达到150mW/m^2,比目前的单菌生物光伏系统普遍提高10倍以上。该系统可稳定实现长达40天以上的功率输出,为进一步提升BPV光电转化效率奠定了重要基础。浅黄微杆菌在农业上具有生防和促生作用,能对稻瘟病病菌、香蕉枯萎病四号生理小种病菌、灰霉菌有抑制效果。抗辐射链霉菌菌株
利用脱色芽孢杆菌进行生物修复已成为新的研究热点。越来越多的物质被发现能被侧孢短芽孢杆菌所降解。三侧毛壳菌株
粪肠球菌基因转移粪肠球菌具有活跃的基因转移能力。它可通过多种方式实现基因水平转移,其中接合转移较为常见。在接合转移过程中,供体菌和受体菌通过细胞间的接触,由供体菌将携带特定基因的质粒或其他遗传元件转移至受体菌。转化过程也时有发生,即粪肠球菌从周围环境中摄取外源DNA并整合到自身基因组。这种基因转移使得粪肠球菌能够快速获得新的性状,如耐药基因的传播。当一株粪肠球菌获得耐药基因后,可通过基因转移将其扩散到其他菌株,迅速扩大耐药菌群体。这不仅加速了粪肠球菌自身的进化适应,也使得耐药性在细菌群体中传播,对公共卫生构成严重威胁。因此,监测和控制粪肠球菌的基因转移是应对耐药菌问题的重要环节。三侧毛壳菌株