性能纵向对比
成本:有机硅树脂>环氧树脂>聚氨酯;
注:在有机硅树脂中缩合型的成本接近了环氧树脂,而改性后的环氧树脂也接近了PU;
工艺性:环氧树脂>有机硅树脂>聚氨酯;
注:PU因为其亲水性,必须有真空干燥才能得到比较好的固化物,如无需真空和干燥的成本又实在太高,所以热溶胶虽然是加热溶解浇注,但总体来看其可操作性还是比PU的简单的多;
电气性能:环氧树脂树脂>有机硅树脂>聚氨酯;
注:加成型的有机硅或者是石蜡等类型的热溶胶,有的电气特性甚至比环氧的还要高,例如表面电阻率;
耐热性:有机硅树脂>环氧树脂>聚氨酯;
注:低廉价格的PU其耐热比热溶胶好不了多少
耐寒性:有机硅树脂>聚氨酯>环氧树脂 高黏度电芯灌封胶水,有效防止电池内部渗漏。北京动力电池包热管理新能源汽车动力电池组BMS管理系统三防保护
导热灌封胶适用于各种恶劣环境工作和**精密/敏感电子设备。例如,适用于汽车电子、电容组、模组、太阳能接线盒、电动汽车充电模块、LED电源驱动模块、锂离子电池组、磁感应线圈、逆变电源等。它不仅防水、还能增强电子产品的能力、抗震能力和散热性能,还可以保护其免受自然环境的侵蚀,延长使用寿命。导热密封胶的主要应用是动力电池。电池的热量通过导热密封胶引导至外壳表面,外壳多采用金属材料,可以直接降低电池的温度,保证电池的可靠性。北京动力电池包热管理新能源汽车动力电池组BMS管理系统三防保护动力电池热传导方案-导热灌封胶软包底部灌封填充。
电动车客户正在寻求具有以下性能的新型导热材料
•高导热性:2~3W/m*K
•低密度•设备磨损少
•低黏度和低模组压入力
•兼容注入工艺
•不含有机硅
•支持与铝材和PET的界面粘接
粘接外部液冷板
用于电池包模组与热管理系统的聚氨酯导热结构胶:
•替代机械紧固件
•减振
•优化伸长率,以解决冷却装置与冷却板之间的位温差问题
•室温快速固化,可通过红外线加热进一步提速
粘接电芯与电池模组
聚氨酯导热结构胶
•新开发的具有更高黏度和更强填料分散能力的预聚体
•低密度、低摩擦和低模组压入力
•高导热性和强度
•抗冲击和抗老化
粘接方形电芯与电池包
•客户需要消除模组结构,并直接粘接电芯与电池外壳
•根据不同的设计策略,需要采用具有不同功能的聚氨酯导热结构胶
•聚氨酯导热结构胶必须能承受电芯的膨胀力
方形电池热传导方案-双组份导热固定胶
电芯与电芯粘接:电芯与水冷板导热填充或粘接金属/铝
优势:操作时间:20分钟;适用于非透明支架材料的电芯固定;粘接强度高;老化后强度保持率不低于80%;流水线作业,生产效率高;符合阻燃等级UV94V-0等级;导热系数1.5W/M.K。
推荐:环氧导热结构胶
方形电池热传导方案-单组份导热硅胶
电芯与电芯粘接:PET\PE电芯与支架粘接:PET\PE\ABS\铝电芯与水冷板导热填充或粘接金属
优势:有弹性、抗振动、抗缓冲;耐高低温-40~200摄氏度;耐冷热冲击、耐老化、耐腐蚀;流水线作业,生产效率高;符合阻燃等级UV94V-0等级;导热系数0.8~2.0W/M.K。单组份易操作;
推荐:AP-753(W261)AP-607(521)
BMS电池管理系统导热胶、解决BMS电池管理系统散热问题!
电芯导热灌封作用:绝缘保护,增加使用寿命
新能源汽车的动力电池组由成百上千颗电芯串并联组成,虽然电芯的自爆率为百万分之一,但仍会发生电芯自爆的情况。由于导热灌封胶能吸收冲击应力,并且具有良好的阻燃性,因此当单颗电芯过充BOOM时,其能切断连锁反应,保护周边电芯不受影响。导热灌封胶的阻燃防爆能力直接影响电池模组过充失控后的安全性,其能保证电池模组中的一颗电芯过充BOOM燃烧,不会引起周边电芯的燃烧,使周边电芯得到有效的保护。 圆柱形电池用方案-非透明支架固定透明支架:PC+金属\蓝膜PET\PE丙烯酸结构胶AP-9770。北京动力电池包热管理新能源汽车动力电池组BMS管理系统三防保护
新能源电池模块和电池组灌封胶。北京动力电池包热管理新能源汽车动力电池组BMS管理系统三防保护
高导热灌封胶,结构胶的应用高导热灌封胶,结构胶的应用高导热灌封胶,结构胶的应用高导热灌封胶,结构胶的应用
新能源汽车电池的用胶点:
●电芯与电芯之间的结构粘接;●导电片与模组壳体的粘接;●电芯灌封;●圆柱形电池底部的粘接固定;●圆柱电池支架固定;●底板与电芯之间的导热;●电池的螺纹锁固。
胶粘剂在动力电池上的作用:
●为动力电池提供防护效果;●实现安全可靠的轻量化设计;●热管理;●帮助电池应对更复杂的使用环境。
北京动力电池包热管理新能源汽车动力电池组BMS管理系统三防保护