电压的波动和闪变主要由冲击性负荷产生,抛开设备的性能方面,我们可以从提高电网供电能力和安装补偿设备来的控制电压波动和闪变。提高供电能力措施1、提高供电电压等级2、架设特殊大型负荷群的线路3、在敏感负荷附近采用分散发电技术安装补偿设备1、静止无功补偿器SVC。其中较为简单的有晶闸管投切电容器,用晶闸管组成无触点的电力电子开关快速投切电容器组,来实现容性无功功率的调节。其关键技术是在电容器电流过零时的瞬间切除2、静止无功发生器SVG。静止无功发生器具有连续调节,调节范围大、响应速度快、控制精度高、运行可靠等优点,是目前性能比较好的动态无功补偿装置。SVG是指由自换相的电力电子桥式整流器来进行动态无功补偿的装置,具有自整流充电能力,SVG实际上是将自换相桥式电路通过电抗器并联在电网上,形成可以产生超前相位或者滞后相位电流的逆变器。与TCR型SVC装置不同的是SVG的电压调节范围不受电网参考电压的影响,效应速度快。准确检测分析,提升电能管理水平。云南电能质量实验
只电压暂降一项给制造业带来的年经济损失就高达数百亿元,为了应对这一问题,企业通常会采用动态电压恢复器(DVR)、不间断电源(UPS)等设备进行治理,同时电网公司也在不断加强电网结构优化,提高电网的抗扰动能力,通过建立电压暂降监测网络,实时掌握电网电压波动情况,为后续的治理措施提供数据支持,保障工业生产的连续稳定运行。谐波污染是当前电力系统面临的另一大电能质量挑战,主要来源于各类电力电子换流设备,如整流器、逆变器、变频器等,这些设备在将交流电转换为直流电或进行频率调节的过程中,会产生大量的高次谐波电流,注入电网后导致电网电压波形发生畸变,谐波的存在不只会增加电网的损耗,降低供电效率,还会对周围的电气设备造成干扰,例如使变压器、电机等设备发热加剧,绝缘老化加速,缩短使用寿命,同时还可能影响继电保护装置的正常动作,导致保护误动或拒动,威胁电网安全,为了抑制谐波污染,电力行业通常采用无源滤波器、有源电力滤波器(APF)等谐波治理设备,对谐波电流进行补偿和抑制,同时国家也制定了严格的谐波排放标准,规范企业的用电行为,要求高耗能、高谐波排放的企业必须采取有效的谐波治理措施。确保电网谐波水平控制在允许范围内。山东电压波动电能质量专业检测电能质量,优化电网运行效能。

风电场需在并网状态稳定、实际运行容量不低于额定容量95%的条件下进行测试,允许5%的机组停运,且测试期间不得变更关键电气设备配置。电压和电流互感器应满足1级及以上精度要求,数据采集系统精度不低于0.2级。
电能质量测试项目电压波动与闪变:测量风电场在不同功率区间(0-100%额定功率,以10%为区间)运行时引起的电压变化,采用IEC标准的短时闪变值(Pst)和长时闪变值(Plt)计算方法。测试要求风电场实际运行容量需大于额定容量的95%方可进行。谐波与间谐波:需覆盖0-50次谐波分量,对于2kHz~9kHz高频段按带宽分群计算,含风力发电机组停机时的背景谐波测试不平衡度:通过电压/电流负序分量和零序分量评估三相不平衡程度频率偏差:通过风电机组运行数据验证风电场频率调节特性
屋顶光伏接入公用电网的电能质量预测评估应包含电压偏差、电压波动、谐波电流、谐波电压等电能质量指标。应针对屋顶光伏接入公用电网的PCC开展电能质量预测评估。屋顶光伏接入电网的电能质量预测评估应依据背景量测数据、电网等值数据、拟并网光伏设备参数等开展。电能质量预测评估应在屋顶光伏以额定功率接入公用电网的工况下进行。基于电能质量指标预测评估值和GB/T12325、GB/T12326、GB/T37408、GB/T17625.8、GB/T14549、GB/T15543中规定的电能质量指标限值,评估屋顶光伏接入后对公用电网电能质量的影响,指导屋顶光伏的新增和扩容。
屋顶光伏接入公用电网的电能质量预测评估流程如下:a)收集背景电能质量数据、电网等值数据、拟并网光伏参数及电能质量特性等数据;b)计算电压偏差、电压波动、谐波电流、谐波电压含有率、电压总谐波畸变率等电能质量指标值;c)将预测评估值与标准限值进行对比分析,超标时给出相应的治理建议;d)编制评估报告。 用专业检测,点亮企业用电安全灯。

频率偏差是衡量电能质量的重要指标之一,电网的额定频率通常为50Hz(或60Hz),频率偏差是指实际频率与额定频率之间的差值,频率的稳定取决于电网中有功功率的平衡,当电网的有功功率供应大于负荷需求时,频率会升高;反之,当有功功率供应不足时,频率会降低,频率偏差过大不只会影响电动机的转速稳定性,导致生产设备加工精度下降,还会对广播电视、通信设备等产生干扰,影响信号的正常传输,对于并网运行的新能源发电系统来说,频率偏差还可能导致其脱网,影响电网的安全稳定,因此,电网调度中心需要实时监测电网频率,通过调整发电机组的出力,保持电网有功功率的平衡,确保频率偏差控制在±(或±)的允许范围内,随着新能源发电的快速发展,其波动性和间歇性对电网频率稳定带来了新的挑战,需要采用储能技术、虚拟电厂等新型调控手段,提高电网的频率调节能力。挖掘电能潜力,检测优化一步到位。四川三相电压不平衡电能质量
全维检测电能,保障设备稳定运转。云南电能质量实验
随着高速和重载铁路的不断发展,牵引供电系统能否正常运行直接影响产业经济与民生的发展。近年来,国内已有多起牵引供电系统供电能力不足案例的文献报道,主要表现有牵引变压器过负荷、接触网载流量不足及电压过低。掌握铁路网各个子系统的供电能力信息,才能有依据地进行设计、维护和改造,实现电气化铁路的安全高效运营。
力系统配电网领域对供电能力给出明确定义:在一定供电区域内,满足一定安全原则,且考虑到网络实际运行情况下所能供应的最大负荷。在此基础上,电力系统领域的供电能力评估方法主要侧重于系统潮流计算的解析,包括容载比法、考虑运行约束的供电能力评估及N-1安全约束条件下的比较大供电能力分析。牵引供电系统作为一种特殊的辐射状配电网,学者们同样采用潮流仿真技术评估其供电能力。 云南电能质量实验