LC-NE神经元对我们的生命至关重要。我们称它为生命中枢。如果没有这些神经细胞,很可能会在地球上灭绝。LC-NE神经元在多种神经退行性疾病和神经精神疾病中也发挥着作用,尽管这种作用尚不为人知。在诸如阿尔茨海默病和帕金森病之类的许多神经退行性疾病中,这些神经元很早就开始退化---有时比其他大脑区域开始衰退还要早好几年。人们注意到这一点已经有很长一段时间了,但不知道在这一过程中蓝斑核的功能是什么。部分原因是我们没有一种很好的模型来模拟人类的LC-NE神经元。以前尝试用人类多能性干细胞制造LC-NE神经元时,遵循的是基于在小鼠模型中产生LC-NE神经元的实验流程。两年来,Tao一直在探索这些尝试失败的原因,以及利用人类多能性干细胞产生LC-NE神经元有何不同。在这项新的研究中确定了ACTIVIN-A,即一种属于生长因子家族的蛋白,在调节人类LC-NE神经元的神经发生中起着重要作用。为了产生LC-NE神经元,这些将人类多能性干细胞转化为来自后脑的细胞。然后,利用ACTIVIN-A和一系列附加信号,他们引导这些细胞发育成LC-NE神经元。一旦成功转化后,这些细胞显示出人脑中LC-NE神经元功能的典型特征,释放神经递质去甲肾上腺素。它们还表现出轴突分枝化。 大鼠肺大静脉平滑肌细胞分离自肺。肝星形细胞细胞供应商家
自然杀伤细胞(NK)细胞是机体免疫的重要成员,具有强大的抗功能。相比T细胞靶向需要依靠抗原,NK细胞可直接靶向细胞,并且用于同种异体移植时不易发生移植物抗宿主病(GVHD),是嵌合抗原受体(CAR)工程化的又一理想选择。NK细胞胞啃作用(Trogocytosis)指来自靶细胞的表面蛋白被转移到NK细胞或T细胞等免疫细胞的表面以调节后者活性。研究证实,抗原丢失,并因胞啃作用携带抗原的NK细胞又会被CAR-NK细胞错误识别,导致CAR-NK细胞功能衰竭和自相残杀,终发生逃逸和CAR-NK细胞后反应不佳。探索有效克服上述问题的策略十分迫切。研究人员发现,临床试验中接受靶向CD19的CARNK细胞(CD19CARNK)的淋巴性恶性患者,其复发概率与CAR-NK细胞表面CD19抗原水平和细胞表面CD19水平有较高的关系。为了阻止CAR-NK细胞间的错误识别,研究人员在原有的CD19CAR-NK细胞的基础上添加了一种识别NK细胞特有标志物的抑制性CAR,使得CAR-NK细胞彼此之间不再因携带CD19抗原而被错误杀死。在临床前模型中,经过逻辑门控制的双靶向CAR-NK细胞能够更专一地识别细胞,减少NK细胞功能衰竭和自相残杀的频率,提高抗活性。 内脏脂肪细胞细胞厂家大鼠心肌细胞分离自心脏。
肝脏具有的功能,包括血液、代谢产物储存、脂质/葡萄糖代谢和血清蛋白分泌。这些关键任务主要由肝细胞完成,肝细胞由多种细胞类型支持。如负责肝脏免疫的库普弗细胞(Kupffercell)、与肝纤维化相关的肝星状细胞等。研究已对成人肝细胞进行了的表征,包括详细的单细胞转录组分析。然而对胎儿时期肝细胞的研究仍然有限。由于缺乏高分辨率早期肝脏发育的描述性研究,研究的空缺对新疗法的发展尤其是再生医学的应用提出了重大挑战。近日,研究人员揭示了调控人类肝细胞命运的关键通路。研究人员通过对人类胎儿和成人肝脏进行单细胞RNA测序(scRNA-seq)分析绘制了高分辨率的细胞图谱。该单细胞图谱不仅揭示了组成肝脏的不同细胞类型的发育轨迹,还揭示了控制发生的细胞间相互作用。随后,研究人员利用这一信息分离了人类成肝细胞,该类细胞是肝实质的早期祖细胞,并证实它们可以作为类繁殖以及模拟发育过程。,利用该发育图评估了人类多能干细胞(hPSCs)向肝细胞样细胞(HLCs)的分化路径,并揭示了能够改善HLCs与成人肝细胞相似性的转录因子。
大鼠牙周膜干细胞分离自牙齿组织;牙周组织是由牙周膜、牙槽骨和牙龈三部分组成,它的主要功能是支持、固定和营养牙齿。牙周膜它是一种致密的纤维组织,一端埋入牙骨质,一端连接牙槽骨,实际上是牙齿通过牙周膜被悬吊在牙槽窝中,使牙齿能牢固地固定在颌骨的牙槽窝内,具有一定的弹性,有利于缓冲牙齿承受的咀嚼力。牙髓的神经、血管通过根尖孔与牙槽骨和牙周膜的血管、神经相连接。营养物质通过血液供给牙髓,营养牙齿,所以牙齿和牙周组织关系密切。间充质干细胞(mesenchymal stem cells,MSCs)来源于胚胎时期的中胚层组织,具有很强的自我复制和多向分化潜能,具有向脂肪细胞、成骨细胞、软骨细胞及肌细胞等多种终末细胞定向分化的能力,运用 MSCs来修复软骨损伤具有很好的应用前景,目前已能够从骨髓、脂肪、滑膜、骨骼、肌肉等组织以及羊水、脐带、脐带血中分离和制备间充质干细胞。目前,牙周支持组织重建主要依赖机械、药物或引导组织再生技术,随着分子生物学、组织工程学和干细胞技术的飞速发展,牙周组织再生工程技术成为牙周病***研究的热点,牙周膜干细胞(Periodontal ligament stem cell,PDLSC)是牙周组织再生工程的关键种子细胞之一。体外培养的小鼠肺大静脉平滑肌细胞呈梭形、星形或不规则形,内有1-2个卵圆形细胞核。
骨髓中包含外周神经,如交感神经、副交感神经和感觉神经纤维。研究发现,切断腰交感神经后,骨髓中的交感神经纤维和施旺细胞耗尽,随后导致造血干细胞(HSC)耗竭。在稳态条件下,使用6-羟基多巴胺进行全身去交感神经支配不会影响HSC的频率或功能,但去除交感神经和感觉神经则会引起骨髓HSC的耗竭。此外神经纤维还能调节造血干/祖细胞进入血液的昼夜节律动员,以及影响通过辐射或化疗进行清髓后的造血再生。外周神经具有促进不同组织再生的功能,但目前对其促进再生的机制知道的仍然很少。近日,研究人员报道了骨髓内外周神经通过促进LepR阳性(LepR+)细胞释放生长因子进而促进骨髓再生,为造血干细胞移植以及白血病等血液疾病的临床提供了重要参考。研究人员构建了骨髓内神经特异性消融小鼠模型(去神经小鼠),发现骨髓内表达单一的神经生长因子(NGF),并且NGF主要由LepR+间充质细胞表达。而在六月龄的LepRcre;Ngffl/-小鼠骨髓内完全消除神经纤维对髓外外周神经没有影响。提示LepR+细胞合成的HGF对骨髓内神经维持十分重要。此外,稳态维持情况下,去神经小鼠模型的造血干/祖细胞及造血功能完全正常,说明骨髓内造血干/祖细胞的维持不依赖于骨髓内外周神经。 大鼠肺微血管内皮细胞分离自肺;睾丸支持细胞细胞询问报价
大鼠胰腺星状细胞分离自胰腺。肝星形细胞细胞供应商家
蓝斑核(LC),简称蓝斑,位于后脑第四脑室底,脑桥前背部,主要由去甲肾上腺素能神经元(NE)组成的神经核团,是系统中合成去甲肾上腺素的主要部位,在多种生理功能包括觉醒、清醒、应激反应、注意力集中等扮演重要角色。尽管蓝斑中含有的神经元数量非常少,但蓝斑对大脑十分重要,几乎参与到整个大脑众多脑区的功能调节。研究提示,蓝斑去甲肾上腺素能神经元的功能异常与帕金森病、焦虑、抑郁等众多神经系统疾病有着密切的关联。然而,目前对于蓝斑在神经系统疾病中的具体功能仍然知之甚少,缺乏能够真实反映蓝斑与神经系统疾病的细胞模型是其中重要原因之一。近日,研究人员报道利用人多能干细胞成功构建了蓝斑去甲肾上腺素能神经元,有望用于机制研究和药物筛选。研究人员根据早期动物研究,设计了蓝斑的发育起始路线。首先将人多能干细胞诱导成为蓝斑发育起源的个菱脑原节(R1)。随后他们发现R1中的去甲肾上腺素能神经元数量很少,推测需要额外的信号才能完成由R1细胞到其祖细胞的特化(specification)。在大量筛选之后,研究人员发现ACTIVINA可以有效地诱导去甲肾上腺素能神经祖细胞的产生,而且可以诱导的细胞存在区域特异性,并与ACTIVINA剂量和时间存在依赖关系。 肝星形细胞细胞供应商家