与传统资产不同,数据资产具备非实体性、依托性、可共享性、可加工性、价值易变性等多种特征。由于数据资产涉及的经济行为与传统资产较为一致,其评估目的同样可分为内部评估目的,如数据管理、会计核算等;以及外部评估目的,如数据资产交易流通、出资入股等。数据资产的评估方法包括收益法、成本法、市场法等。收益法是目前数据资产更适用的评估方法之一,根据预期收益口径可以采用直接收益、分成收益、超额收益和增量收益4种方式。对于可获得可靠财务预测、并已经实现商业化应用场景的数据资产来说,收益法能够直观地体现数据资产价值实现的过程。成本法除了确定重置成本,关键要确定数据资产价值调整系数。对于仍处于开发阶段、成本易于归集且未来收益尚未确定的数据资产来说,成本法不失为较具适用性的评估方法。但成本法未能有效考虑数据资源收益与成本不匹配的问题。市场法应用前提是具有公开并活跃的交易市场。由于目前数据资产交易主要为场外交易,缺乏成熟、活跃的数据资产公开交易市场与可比参照物,且数据资产价值受到应用场景影响较大,其价值易变性导致交易实例的可比性低,市场法使用限制较为明显。 羽山数据资产交易平台,为数据入表提供了高效便捷的解决方案。如何对数据进行评估
数据交易生态中的重要一环——数商,正发挥着什么作用?在峰会重要组成部分第二届中国国际数字产品博览会上,提出了数商在数据交易过程中承担的四种角色。角色之一是提供底层技术,例如通过隐私计算等技术可以帮数据交易所或者平台打造安全底座,完成数据的虚拟汇聚,实现数据底层价值。第二个角色是为数据交易所提供数据资源,企业在服务客户的同时形成数据生态,通过数据交易所作为合规出口,承担撮合数据交易的数据源角色。第三个角色是提供数据产品,除了自有数据,也可以通过与数交所其他的合作伙伴提供的数据组合成一个数据联盟,以此生产不同的数据产品去进行交易,比如服务于药厂的新药研发产品,服务于像金融征信的产品,服务于数字营销的产品等。第四个角色是为数据交易所提供精细的需求方,数据交易流程的终点是数据使用方,数商可以实现需求导流。 公司数据资产写入企业报表方案数据确权是否能够防止数据滥用?
数据资产是指拥有数据权属(数据产品经营权、数据加工使用权、数据资源持有权)、有价值、可计量、可读取的网络空间中的数据集。根据定义,一个数据集被认定为一个企业的数据资产,需要满足4个必要条件:企业拥有这一数据集的数据权属;数据集是有价值的;数据集成本或价值应该能够被可靠地计量;数据集必须是可机读的。显然,对于一个企业来说,将一个数据资源转化为数据资产时,数据集有价值、可机读这2个必要条件是容易被甄别和实现的,数据资产化的难点在于对数据权属和可计量这2个条件的甄别和实现。
其次,建立有效的数据治理机制。企业和机构应建立健全的数据管理制度,确保数据的安全和合理使用。再者,加强技术支撑也至关重要。利用先进的技术手段,如区块链技术,可以有效地记录和验证数据的权属和交易过程。总之,数据确权是保护数据权益的关键一步,也是数字经济发展的重要基础。我们需要充分认识到其重要性,积极应对挑战,通过加强法律法规建设、建立有效的数据治理机制和加强技术支撑等措施,推进数据确权工作的顺利进行。只有这样,我们才能在数字时代更好地保护个人的权益,促进数据的合理利用,推动数字经济的持续健康发展。数据确权是否能够促进创新发展?
数据资产相关标准和规范的编制工作已在全国各地铺开。比如,江苏、天津、上海、安徽、湖北等多地政企都在征集“数据要素×”典型案例,或在为相关标准和规范的编制做准备。3月6日,北京国际大数据交易所召开了2024年标准工作启动会。会上透露,今年将重点聚焦《数据资产登记指南》《数据资产质量评估指南》《数据匿名化处理实施指南》《数据资产合规入表指南》以及《数据可信流通跨域管控技术规范》等五项标准的编制工作。结合建行的案例,我们可以预见,以上四“指南”和一“规范”能出台,将有助于银行对企业,以及自身数据资产的规范化管理,特别是《数据资产登记指南》和《数据资产质量评估指南》两项标准的编制,将为银行在数据资产的确权、计量、入表、价值评估等方面提供明确的指导和规范。遵循这些标准,银行将能够更好地管理和利用数据资产,提升数据业务的稳定性和可靠性。 数据确权对于企业有何意义?企业数据资产确权增值计量服务
数据确权有助于提高数据的安全性和保密性。如何对数据进行评估
数字经济下的数字资产应该做到以下几个方面:一,增加技术储备,打造基础平台。在数字时代,技术的重要性愈发凸显。区块链、分布式计算、密码学等技术和方法都是发展数字资产业务的基石。由于资产的交易和储存都以数字化形式存在,系统漏洞和外部威胁的破坏性远超过往,因此,保证系统的安全性是发展数字资产业务的前提条件。提升交易速度和便利性也是数字资产业务的迫切需求。从安全和业务发展两方面看,技术都是基础。第二,明确业务实质。以往关于数字资产的讨论并未对数字资产化和资产数字化进行区分,给学术界和实务界带来诸多困扰。对经济主体行而言,二者的业务发展路径、技术需求存在天壤之别,若不能明确数字资产的实质,可能导致发展方向的混乱。因此,可以考虑以“数据资产”对应数字的资产化过程,以“数字资产”对应资产的数字化过程,由此进行区分,明确业务重点,更好地统筹安排业务资源和技术资源。如何对数据进行评估
数据资产入表:挑战与机遇并存将数据纳入财务报表并非易事,面临着诸多挑战。首先,数据的计量和确认是技术上的难点。由于数据的特殊性,其计量和确认与传统资产存在较大差异,需要制定新的会计准则和方法。其次,数据的估值也是一大挑战。数据资产的价值受到多种因素的影响,如数据的规模、质量、应用场景等,需要综合考虑各方面因素进行合理估值。此外,数据的隐私保护、安全性以及合规性问题也是数据资产入表面临的重要问题。然而,这些挑战也带来了新的机遇。通过制定合理的会计准则、完善数据治理体系以及加强数据安全技术,企业可以更好地管理和利用数据资产,释放其潜在价值。同时,Zf和社会各界也在加强数据相关法律法规的制定和实施,...