电源模块概述: 一般来说,这类模块称为负载点 (POL) 电源供应系统或使用点电源供应系统 (PUPS)。由于模块式结构的优点甚多,因此模块电源较广用于交换设备、接入设备、移动通讯、微波通讯以及光传输、路由器等通信领域和汽车电子、航空航天等。 尤其近几年由于数据业务的飞速发展和分布式供电系统的不断推广,模块电源的增幅已经超出了一次电源。模块电源具有隔离作用,抗干扰能力强,自带保护功能,便于集成。随着半导体工艺、封装技术和高频软开关的大量使用,模块电源功率密度越来越大,转换效率越来越高,应用也越来越简单。充电电源是为了供蓄电池充电用的整流装置。天津充电电源哪家公司便宜
按现代电力电子的应用领域,我们把电源模块划分如下成绿色电源模块、开关电源模块。 因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可较大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。金山区充电电源厂家哪家便宜在电源模块应用中,EMC设计往往是重中之重。
随着电源技术的发展,电源模块是开关电源的发展趋势。在电源模块设计中,设计是整体的关键,而测量则是一把标尺。当一切工作就绪之后,并不意味着结束,电源模块性能的优劣是值得关注的问题。 完成原理图设计后,打快板拿到Demo样品后,主要从以下七个方面的维度完成对电源模块的测试: 1.输入电压性能测试,包括冷机启动测试,使能电压阈值测试; 2.输出电压性能测试,包括输出电压纹波测试,负载瞬态变化测试,环路稳定性测试; 3.时序测试:开机时序,关机时序; 4.保护功能测试:过压保护,过流保护,短路保护,过温保护; 5.效率测试; 6.PWM开关频率测试; 7.关键元件耐压测试,主要包括MOSFET,DIODE,电感,输入电容,输出电压; 完成以上七个方面的测试,可以基本反映出电源模块的性能优劣。下面将测试中的七个方面的实测数据和Datasheet中的数据做一个对比分析,供大家讨论,看看其他坛友在电源设计中有多少测试内容。
电源模块在工作运行过程中,容易出现模块温度过高发热的情况,因此在研发过程中能否对散热性能提供有效保障就成为了摆在研发部门面前的重要问题之一,选用合适的散热器也就成为了研发过程中的重中之重。那么,大功率的电源模块散热性能为什么会出现较大的差异?散热器的选择对于散热效果都有哪些影响呢? 一来,散热器翅片长度会造成散热性能的差异问题。在研发过程中,适当增加散热器的翅片长度适可以有效减小电源模块的器件结温,但是过分增加翅片长度并不能确保热量传导至散热器翅片的末端,反而使散热器重量增加太多。一般认为,散热器的翅片程度和基座宽度比例接近1时,传热效果较好。 再者,散热器翅片厚度的选择也同样会影响模块的散热性能。在正常运行的情况下,由于导热主要是沿着电源模块的散热器翅片纵向方向传递,因而翅片的厚度对于散热器热性能没有太大的影响,翅片厚度的增加并没有使热源结温降低很多,反而增加了散热器的重量。为了保证散热器翅片的硬度且易于加工,翅片硬度不能太薄,工程上一般会将散热器翅片的厚度规定在≥1mm左右。电源设计中,新改进的电路产生的问题可能比原先的还要严重。
电源模块的几大指标: 功率 P=UI,是输出电压和输出电流的乘积。 输入电压分交流输入和直流输入2种。 输出电压一般是直流输出,但也有交流输出的。 工作温度 隔离电压:隔离就是将输出与输入进行电路上的分离。有以下几个作用: 一,电流变换; 二,为了防止输入输出相互干扰; 三,输入输出电路的信号特性相差太大,比如用弱信号控制强电的设备 封装尺寸有插针,贴片的,和螺旋。 输出有单路输出,双路输出及多路输出。电源模块是可以直接贴装在印刷电路板上的电源供应器,其特点是可为专门集成电路(ASIC)、数字信号处理器(DSP)、微处理器、存储器、现场可编程门阵列 (FPGA) 及其他数字或模拟负载提供供电。一般来说,这类模块称为负载点(POL) 电源供应系统或使用点电源供应系统(PUPS)。由于模块式结构的优点甚多, 因此模块电源较广用于交换设备、接入设备、移动通讯、 微波通讯以及光传输、路由器等通信领域和汽车电子、航空航天等。AC/DC变换是将交流变换为直流,其功率流向可以是双向的。黑龙江充电电源采购哪家好
DC/DC变换器使控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。天津充电电源哪家公司便宜
充电电源供电系统: 分布式电源供电系统采用小功率模块和大规模控制集成电路作基本部件,利用较新理论和技术成果,组成积木式、智能化的大功率供电电源,从而使强电与弱电紧密结合,降低大功率元器件、大功率装置(集中式)的研制压力,提高生产效率。 八十年代初期,对分布式高频开关电源系统的研究基本集中在变换器并联技术的研究上。八十年代中后期,随着高频功率变换技术的迅述发展,各种变换器拓扑结构相继出现,结合大规模集成电路和功率元器件技术,使中小功率装置的集成成为可能,从而迅速地推动了分布式高频开关电源系统研究的展开。自八十年代后期开始,这一方向已成为国际电力电子学界的研究热点,论文数量逐年增加,应用领域不断扩大。 分布供电方式具有节能、可靠、高效、经济和维护方便等优点。已被大型计算机、通信设备、航空航天、工业控制等系统逐渐采纳,也是超高速型集成电路的低电压电源(3.3V)的较为理想的供电方式。在大功率场合,如电镀、电解电源、电力机车牵引电源、中频感应加热电源、电动机驱动电源等领域也有广阔的应用前景。天津充电电源哪家公司便宜