变频节能由流体力学可知,P(功率)=Q(流量)╳ H(压力),流量Q与转速N的一次方成正比,压力H与转速N的平方成正比,功率P与转速N的立方成正比,如果水泵的效率一定,当要求调节流量下降时,转速N可成比例的下降,而此时轴输出功率P成立方关系下降。即水泵电机的耗电功率与转速近似成立方比的关系。无功功率不但增加线损和设备的发热,更主要的是功率因数的降低导致电网有功功率的降低,大量的无功电能消耗在线路当中,设备使用效率低下,浪费严重,由公式P=S╳COSФ,Q=S╳SINФ,其中S-视在功率,P-有功功率,Q-无功功率,COSФ-功率因数,可知COSФ越大,有功功率P越大,普通水泵电机的功率因数在0.6-0.7之间,使用变频调速装置后,由于变频器内部滤波电容的作用,COSФ≈1,从而减少了无功损耗,增加了电网的有功功率。通过控制转子磁链分解定子电流而获得转矩和磁场两个分量。双速电动机都有哪些
电动机在运转中如果降低指令频率,则电动机变为异步发电机状态运行,作为制动器而工作,这就叫作再生(电气)制动。从电机再生出来的能量贮积在变频器的滤波电容器中,由于电容器的容量和耐压的关系,通用变频器的再生制动力约为额定转矩的10%~20%。如采用选用件制动单元,可以达到50%~100%。用离合器连接负载时,在连接的瞬间,电机从空载状态向转差率大的区域急剧变化,流过的大电流导致变频器过电流跳闸,不能运转。电机起动时将流过和容量相对应的起动电流,电机定子侧的变压器产生电压降,电机容量大时此压降影响也大,连接在同一变压器上的变频器将做出欠压或瞬停的判断,因而有时保护功能(IPE)动作,造成停止运转。上海变频电动机质量电压型是将电压源的直流变换为交流的变频器。
在一个散嵌绕组的三相电机中 ,不同相的相邻二匝之间的电压极性可能会不同 ,全幅电压的跃变也有可能达到二倍于一个尖峰电压值。 PWM 变频器输出的电压波形 ,在 380 /480V 交流系统中 ,在电机端测得的尖峰电压值为 1. 2~ 1. 5kV,而在 576 /600V的交流系统中 ,测得的尖峰电压值达到 1. 6~ 1. 8kV。 非常明显 ,在此全幅电压作用下 ,绕组匝间产生表面局部放电。 由于电离作用 ,在气隙中又会产生空间电荷 ,从而形成一个与外加电场反向的感应电场。 当电压极性改变时 ,这个反向电场与外加电场方向一致。这样 ,一个更高的电场产生 ,它会导致局部放电的数量增加 ,终于引起击穿。测试表明 ,作用于这些匝间绝缘的电冲击大小取决于导线特定的性能和 PWM 驱动电流的上升时间。 若上升时间小于0.1μs,则将有 80% 的电势加在绕组的前二匝上 ,即上升时间越短 ,电冲击就越大 ,匝间绝缘的寿命就越短。
现在的电机变频系统大都是采用的恒V/F 控制系统,这个变频控制系统的特点是结构简单、制作便宜。这个系统被普遍应用在风机等大型的并且对于变频系统的动态性能要求不是很高的地方。这个系统是一种典型的开环控制系统,这个系统能够满足大多数电机的平滑的变速要求,但是对于动态和静态的调节性能都是有限的,不能应用在对动态和静态性能要求比较严格的地方。为了实现动态和静态调节的高性能,我们只能采用闭环控制系统来实现。所以有的科研人员提出了控制闭环转差频率的电机调速方式,这种调速方式能够在静态动态调速中达到很高的性能,但是这种系统只能在转速比较慢的电机中得到应用,应为在电机的转速较高的时候,这种系统不仅不会达到节约电能的目的,还会使电机产生极大的瞬态电流,使得电机的转矩在瞬间发生变化。所以说为了实现在较高的转速中实现较高的动态和静态性能,只有先解决电机产生瞬态电流的问题,只有将这个问题合理的解决我们才能更好的发展电机变频节能控制技术。模仿直流电动机的控制方法求得直流电动机的控制量。
变频电动机磁路特点是变频电动机的主磁路般设计成不饱和状态。定子和转子电阻尽可能减小,以降低基波铜耗,弥补高次谐波铜耗的增加,提高效率,降低温升。适当增加电动机绕组的匝数,以掌控高次谐波,但需要兼顾整个调速范围内阻抗匹配的合理性。变频电动机结构特点频电动机结构的变化也主要是考虑非正弦波电源对电动机的影响,一般从绝缘强度、振动、噪声和冷却方式上有所突破。变频电动机对地绝缘和绕组线匝的绝缘等级比较高,一般为F级或更高,具有很强的绝缘耐冲击电压的能力。变频电动机通常采用强迫通风冷却的方式与普通的自带风扇冷却方式不同,变频电动机的散热风扇采用**的电动机进行驱动。电机绝缘频繁地处于循环交变应力作用下 ,使电机绝缘加速老化。上海变频电动机质量
普通异步电机中存在的由于电磁激振力、机械传动等引起的振动等问题在变频电机中变得更为复杂。双速电动机都有哪些
电磁设计对普通异步电动机来说,在设计时主要考虑的性能参数是过载能力、启动性能、效率和功率因数。而变频电动机,由于临界转差率反比于电源频率,可以在临界转差率接近1时直接启动,因此,过载能力和启动性能不在需要过多考虑,而要解决的关键问题是如何改善电动机对非正弦波电源的适应能力。方式一般如下:尽可能的减小定子和转子电阻。减小定子电阻即可降低基波铜耗,以弥补高次谐波引起的铜耗。为掌控电流中的高次谐波,需适当增加电动机的电感。但转子槽漏抗较大其集肤效应也大,高次谐波铜耗也增大。因此,电动机漏抗的大小要兼顾到整个调速范围内阻抗匹配的合理性。变频电动机的主磁路一般设计成不饱和状态,一是考虑高次谐波会加深磁路饱和,二是考虑在低频时,为了提高输出转矩而适当提高变频器的输出电压。双速电动机都有哪些