因此校对和纠错是必不可少的工作。与点阵数码笔相比,键盘输入+语音输入能提升作业数字化效率,然而现有的电脑键盘无法快速输入数理化公式以及常用的希腊字母、符号、几何证明符号、逻辑符号和函数运算符号。用鼠标点击特殊符号表的方式插入特殊符号虽然可行,但是输入效率太低,用户体验也不好,不能提升学生作业数字化的效率。电脑键盘通常分为三个键区:主键盘区,光标控制键区,3*3数字小键盘区。主键盘区包含字符键和非字符键,字符键是指字母键、数字键、标点符号键,是尺寸相同的标准键;非字符键是指shift、ctrl、alt、Enter、Tab、Capslock等键,是尺寸不同的特殊键。随着人工智能技术在手写识别和语音识别领域取得突破,科大讯飞、微软给出了90%以上识别率的语音输入法,汉王科技、法国MyScript公司都给出了具有90%以上识别率的手写输入法,极大提升了数理化公式数字化输入效率,学生们可以更加自然流畅的语音+手写方式完成人机交互。尽管AI极大提升了语音识别和手写识别软件识别率,但不可能达到正确识别,键盘鼠标在纠错过程中依然发挥着不可替代的作用。另外,由于桌面空间有限,键盘、鼠标、手写板在桌面的空间分配。为了解决单麦克风的这些局限性,利用麦克风阵列进行语音处理的方法应时而生。广西量子麦克风阵列哪里买
本实用新型技术提供一种带触摸屏和麦克风阵列的键盘及电子设备,其特征在于:内涵九宫格键盘与触摸屏虚拟键盘和麦克风阵列相结合,触摸屏虚拟键盘上映射数理化特殊符号,以触控方式取代鼠标点击特殊符号表,数理化公式手写识别软件与手写笔配合,在触摸屏上快速输入数理化公式,结合语音识别,实现高效的作业数字化。Keyboardandelectronicequipmentwithtouchscreenandmicrophonearray全部详细技术资料下载【技术实现步骤摘要】一种带触摸屏和麦克风阵列的键盘及电子设备本技术涉及电子设备及其配件,尤指一种带触摸屏和麦克风阵列的键盘及一种电子设备。技术介绍随着人工智能与在线教育的快速发展,AI自动批改作业,生成学生精细的知识图谱,为个性化自适应教学提供基础数据支撑,这将成为新的AI+教学的发展趋势,AI+教学模式有望实现真正的教育公平。作业数字化是AI自适应教学的基础,目前好未来、学霸君、松鼠AI等在线教育公司采用点阵数码笔实现作业数字化,但是点阵数码笔只是将学生手写作业的笔迹转换成数字化轨迹进行记录和保存,还需要通过手写识别软件对轨迹进行识别,才能实现作业数字化。手写笔迹数字化到作业数字化,中间必须经过笔迹识别,由于存在识别错误率。海南未来麦克风阵列设计什么是麦克风阵列技术?
语音识别技术领域,具体为一种基于麦克风阵列的智能语音转文字及同声翻译系统。背景技术:在现在的国际化背景下,我们与国际友人沟通的契机越来越多,然而不同国籍的人的母语不同,不同的语言是沟通中的一个巨大障碍;尽管翻译软件、同声翻译软件都已经出现,但是在嘈杂环境中,因为竞争声源的存在,低信噪比(snr)的声源使得语音转文字的效果、同声翻译软件的翻译效果一直不是很理想。国内已经有了一些相关的发明、以及相关的应用软件。在前端去噪方面,该方法构建了一个基于时频掩蔽的mvdr波束形成器;由于该方法采用的四元麦克风阵列的硬件电路比较复杂,占用空间大,因此并没有小型化和便携性设备产生,在同声翻译领域的实际应用中是有限制的。该方法以传统的双麦克风波束形成法为基础,通过对前向的目标信号进行估算以及维纳滤波,获得增强的语音信号,但是若环境中存在多个竞争性语音噪声,该方法的性能将无法保证。目前市面上已有的语音识别app。
放大器u1的7脚、电容c8的负极、电容c6的一端连接后接入电源,电容c6的另一端、电容c5的一端连接后接地,放大器u1的8脚电容c7的正极、电容c5的另一端互相连接后接入电源,电容c7的负极连接电容c8的正极;本实施例中,一级放大电路选用具有低噪声系数,高线性度等优点的型号为ad624的仪表放大器芯片实现,该芯片是高分辨率信号采集系统的理想器件;其放大功能主要是在其rg1和rg2引脚串联一个电阻来调节电路的放大倍数,本实施例中的一级放大电路的放大倍数为10倍;麦克风阵列连接放大器u1的1脚,将采集的声信号输入到一级放大电路。面向前向麦克风mic1的带通滤波器的电路和二级放大电路包括:放大器u2、电阻r1~r4、r6~r9、电容c1~c4,放大器u2的1脚与电阻r1的一端、电阻r3的一端、电阻r6的一端互相连接,放大器u2的2脚连接电阻r1的另一端、电阻r2的一端,电阻r2的另一端接地,放大器u2的3脚连接电阻r4的一端、电容c3的一端,电阻r4的另一端接地,电容c3的另一端连接电阻r3的另一端、电容c2的一端,电容c2的另一端连接放大器u1的9脚、10脚,放大器u2的5脚连接电容c4的一端、电阻r7的一端,放大器u2的6脚连接电阻r8的一端、电阻r9的一端,电阻r8的另一端接地。这里只讨论有一定形状规则的麦克风阵列。
还有个重要的虚警率指标,稍微有点声音就乱识别也不行,另外还要考虑阈值的影响,这都是麦克风阵列技术中的陷阱。麦克风阵列的关键技术消费级的麦克风阵列主要面临环境噪声、房间混响、人声叠加、模型噪声、阵列结构等问题,若使用到语音识别场景,还要考虑针对语音识别的优化和匹配等问题。为了解决上述问题,特别是在消费领域的垂直场景应用环境中,关键技术就显得尤为重要。噪声抑制:语音识别倒不需要完全去除噪声,相对来说通话系统中需要的技术则是噪声去除。这里说的噪声一般指环境噪声,比如空调噪声,这类噪声通常不具有空间指向性,能量也不是特别大,不会掩盖正常的语音,只是影响了语音的清晰度和可懂度。这种方法不适合强噪声环境下的处理,但是应付日常场景的语音交互足够了。混响消除:混响在语音识别中是个蛮讨厌的因素,混响去除的效果很大程度影响了语音识别的效果。我们知道,当声源停止发声后,声波在房间内要经过多次反射和吸收,似乎若干个声波混合持续一段时间,这种现象叫做混响。混响会严重影响语音信号处理,比如互相关函数或者波束主瓣,降低测向精度。回声抵消:严格来说,这里不应该叫回声,应该叫“自噪声”。回声是混响的延伸概念。近场和远场模型的划分无标准,声源离麦克风阵列中心参考点的距离远大于信号波长时为远场,反之,则为近场?云南无限麦克风阵列设计
阵列的维度、阵元的个数、阵元间距都会影响麦克风阵列定位算法的定位精度与运算速度。广西量子麦克风阵列哪里买
比如几个人围绕Echo谈话的时候,Echo只会识别其中一个人的声音。阵列增益:这个比较容易理解,主要是解决拾音距离的问题,若信号较小,语音识别同样不能保证,通过阵列处理可以适当加大语音信号的能量。模型匹配:这个主要是和语音识别以及语义理解进行匹配,语音交互是一个完整的信号链,从麦克风阵列开始的语音流不可能割裂的存在,必然需要模型匹配在一起。实际上,效果较好的语音交互麦克风阵列,通常是两套算法,一套内嵌于硬件实时处理,另外一套服务于云端匹配语音处理。由8个MIC组成的麦克风阵列麦克风阵列的技术趋势语音信号其实是不好处理的,我们知道信号处理大多基于平稳信号的假设,但是语音信号的特征参数均是随时间而变化的,是典型的非平稳态过程。幸运的是语音信号在一个较短时间内的特性相对稳定(语音分帧),因而可以将其看作是一个准稳态过程,也就是说语音信号具有短时平稳的特性,这才能用主流信号处理方法对其处理。从这点来看,麦克风阵列的基本原理和模型方面就存在较大的局限,也包括声学的非线性处理(现在基本忽略非线性效应),因此基础研究的突破才是未来的根本。另外一个趋势就是麦克风阵列的小型化,麦克风阵列受制于半波长理论的限制。广西量子麦克风阵列哪里买
深圳鱼亮科技有限公司主营品牌有Bothlent,发展规模团队不断壮大,该公司服务型的公司。公司致力于为客户提供安全、质量有保证的良好产品及服务,是一家有限责任公司(自然)企业。公司业务涵盖智能家居,语音识别算法,机器人交互系统,降噪,价格合理,品质有保证,深受广大客户的欢迎。深圳鱼亮科技自成立以来,一直坚持走正规化、专业化路线,得到了广大客户及社会各界的普遍认可与大力支持。