语音识别基本参数
  • 品牌
  • Bothlent
  • 型号
  • TS-USB-6MIC / TS-GX-6MIC系列
  • 封装形式
  • 软件算法+硬件
  • 工作电源电压
  • 5
语音识别企业商机

    业界大部分都是按照静态解码的方式进行,即将声学模型和语言模型构造成WFST网络,该网络包含了所有可能路径,解码就是在该空间进行搜索的过程。由于该理论相对成熟,更多的是工程优化的问题,所以不论是学术还是产业目前关注的较少。语音识别的技术趋势语音识别主要趋于远场化和融合化的方向发展,但在远场可靠性还有很多难点没有突破,比如多轮交互、多人噪杂等场景还有待突破,还有需求较为迫切的人声分离等技术。新的技术应该彻底解决这些问题,让机器听觉远超人类的感知能力。这不能只是算法的进步,需要整个产业链的共同技术升级,包括更为先进的传感器和算力更强的芯片。单从远场语音识别技术来看,仍然存在很多挑战,包括:(1)回声消除技术。由于喇叭非线性失真的存在,单纯依靠信号处理手段很难将回声消除干净,这也阻碍了语音交互系统的推广,现有的基于深度学习的回声消除技术都没有考虑相位信息,直接求取的是各个频带上的增益,能否利用深度学习将非线性失真进行拟合,同时结合信号处理手段可能是一个好的方向。(2)噪声下的语音识别仍有待突破。信号处理擅长处理线性问题,深度学习擅长处理非线性问题,而实际问题一定是线性和非线性的叠加。原理语音识别技术是让机器通过识别把语音信号转变为文本,进而通过理解转变为指令的技术。宁夏云语音识别

    Hinton提出深度置信网络(DBN),促使了深度神经网络(DNN)研究的复苏。2009年,Hinton将DNN应用于语音的声学建模,在TIMIT上获得了当时好的结果。2011年底,微软研究院的俞栋、邓力又把DNN技术应用在了大词汇量连续语音识别任务上,降低了语音识别错误率。从此语音识别进入DNN-HMM时代。DNN-HMM主要是用DNN模型代替原来的GMM模型,对每一个状态进行建模,DNN带来的好处是不再需要对语音数据分布进行假设,将相邻的语音帧拼接又包含了语音的时序结构信息,使得对于状态的分类概率有了明显提升,同时DNN还具有强大环境学习能力,可以提升对噪声和口音的鲁棒性。简单来说,DNN就是给出输入的一串特征所对应的状态概率。由于语音信号是连续的,各个音素、音节以及词之间没有明显的边界,各个发音单位还会受到上下文的影响。虽然拼帧可以增加上下文信息,但对于语音来说还是不够。而递归神经网络(RNN)的出现可以记住更多历史信息,更有利于对语音信号的上下文信息进行建模。由于简单的RNN存在梯度炸和梯度消散问题,难以训练,无法直接应用于语音信号建模上,因此学者进一步探索,开发出了很多适合语音建模的RNN结构,其中有名的就是LSTM。广州电子类语音识别标准语音识别的基础理论包括语音的产生和感知过程、语音信号基础知识、语音特征提取等。

    数据化的“文字”更容易触发个人对信息的重视程度,有效避免信息的遗漏。会议纪要更准确。系统能够提供对与会人员发言内容的高保真记录,且可以通过文字定位并回听语音,达到声文对应,辅助记录人员更好的理解会议思想、提升纪要结论或纪要决议的准确度。数据安全性强。系统应用后能够降低对记录人员的要求,一名普通的人员在会后简单编辑即可出稿,不需要外聘速录人员,内部参与的员工也可控制到少,故只需做好设备的安全管控,就能有效保障会议信息安全。实现价值提高工作效率。系统的实时语音转写、历史语音转写等功能,能够辅助秘书及文员快速完成会议记录的整理、编制、校对、归档等工作,减少会议纪要的误差率,提升工作人员的工作质量和工作效率。会议安全性增强。系统采用本地化部署加语音转写引擎加密,确保会议数据安全,改变了传统会议模式的会议内容保密隐患问题。节约企业成本。系统的功能是实现语音实时转写、会议信息管理。可根据转写内容快速检索录音内容,提取会议纪要,实现便捷的会议录音管理,此技术可节约会议人力成本约50%。开启会议工作智能化。系统实现了会议管理与人工智能的接轨,为后续推动办公业务与人工智能、大数据的融合奠定了基础。

    机器必然要超越人类的五官,能够看到人类看不到的世界,听到人类听不到的世界。语音识别的产业历程语音识别这半个多世纪的产业历程中,其中的共有三个关键节点,两个和技术有关,一个和应用有关。关键节点是1988年的一篇博士论文,开发了基于隐马尔科夫模型(HMM)的语音识别系统——Sphinx,当时实现这一系统的正是现在的投资人李开复。从1986年到2010年,虽然混合高斯模型效果得到持续改善,而被应用到语音识别中,并且确实提升了语音识别的效果,但实际上语音识别已经遭遇了技术天花板,识别的准确率很难超过90%。很多人可能还记得,在1998年前后IBM、微软都曾经推出和语音识别相关的软件,但终并未取得成功。第二个关键节点是2009年深度学习被系统应用到语音识别领域中。这导致识别的精度再次大幅提升,终突破90%,并且在标准环境下逼近98%。有意思的是,尽管技术取得了突破,也涌现出了一些与此相关的产品,比如Siri、GoogleAssistant等,但与其引起的关注度相比,这些产品实际取得的成绩则要逊色得多。Siri刚一面世的时候,时任GoogleCEO的施密特就高呼,这会对Google的搜索业务产生根本性威胁,但事实上直到AmazonEcho的面世,这种根本性威胁才真的有了具体的载体。语音识别模块被广泛应用在AI人工智能产品、智能家居遥控、智能玩具等多种领域上。

    语音识别技术飞速发展,又取得了几个突破性的进展。1970年,来自前苏联的Velichko和Zagoruyko将模式识别的概念引入语音识别中。同年,Itakura提出了线性预测编码(LinearPredictiveCoding,LPC)技术,并将该技术应用于语音识别。1978年,日本人Sakoe和Chiba在前苏联科学家Vintsyuk的工作基础上,成功地使用动态规划算法将两段不同长度的语音在时间轴上进行了对齐,这就是我们现在经常提到的动态时间规整(DynamicTimeWarping,DTW)。该算法把时间规整和距离的计算有机地结合起来,解决了不同时长语音的匹配问题。在一些要求资源占用率低、识别人比较特定的环境下,DTW是一种很经典很常用的模板匹配算法。这些技术的提出完善了语音识别的理论研究,并且使得孤立词语音识别系统达到了一定的实用性。此后,以IBM公司和Bell实验室为的语音研究团队开始将研究重点放到大词汇量连续语音识别系统(LargeVocabularyContinuousSpeechRecognition,LVCSR),因为这在当时看来是更有挑战性和更有价值的研究方向。20世纪70年代末,Linda的团队提出了矢量量化(VectorQuantization。VQ)的码本生成方法,该项工作对于语音编码技术具有重大意义。一个连续语音识别系统大致包含了四个主要部分:特征提取、声学模型、语言模型和解码器等。广州光纤数据语音识别服务标准

智能玩具语音识别技术的智能化也让玩具行业进行了变革,比如智能语音娃娃、智能语音儿童机器人。宁夏云语音识别

    语音文件“/timit/test/dr5/fnlp0/”的波形图、语谱图和标注SwitchBoard——对话式电话语音库,采样率为8kHz,包含来自美国各个地区543人的2400条通话录音。研究人员用这个数据库做语音识别测试已有20多年的历史。LibriSpeech——英文语音识别数据库,总共1000小时,采样率为16kHz。包含朗读式语音和对应的文本。Thchs-30——清华大学提供的一个中文示例,并配套完整的发音词典,其数据集有30小时,采样率为16kHz。AISHELL-1——希尔贝壳开源的178小时中文普通话数据,采样率为16kHz。包含400位来自中国不同口音地区的发音人的语音,语料内容涵盖财经、科技、体育、娱乐、时事新闻等。语音识别数据库还有很多,包括16kHz和8kHz的数据。海天瑞声、数据堂等数据库公司提供大量的商用数据库,可用于工业产品的开发。08语音识别评价指标假设"我们明天去动物园"的语音识别结果如下:识别结果包含了删除、插入和替换错误。度量语音识别性能的指标有许多个,通常使用测试集上的词错误率(WordErrorRate,WER)来判断整个系统的性能,其公式定义如下:其中,NRef表示测试集所有的词数量,NDel表示识别结果相对于实际标注发生删除错误的词数量,NSub发生替换错误的词数量。宁夏云语音识别

深圳鱼亮科技有限公司专注技术创新和产品研发,发展规模团队不断壮大。公司目前拥有专业的技术员工,为员工提供广阔的发展平台与成长空间,为客户提供高质的产品服务,深受员工与客户好评。深圳鱼亮科技有限公司主营业务涵盖智能家居,语音识别算法,机器人交互系统,降噪,坚持“质量保证、良好服务、顾客满意”的质量方针,赢得广大客户的支持和信赖。公司凭着雄厚的技术力量、饱满的工作态度、扎实的工作作风、良好的职业道德,树立了良好的智能家居,语音识别算法,机器人交互系统,降噪形象,赢得了社会各界的信任和认可。

与语音识别相关的文章
与语音识别相关的产品
与语音识别相关的新闻
与语音识别相关的问题
新闻资讯
产品推荐
信息来源于互联网 本站不为信息真实性负责