CNN本质上也可以看作是从语音信号中不断抽取特征的一个过程。CNN相比于传统的DNN模型,在相同性能情况下,前者的参数量更少。综上所述,对于建模能力来说,DNN适合特征映射到空间,LSTM具有长短时记忆能力,CNN擅长减少语音信号的多样性,因此一个好的语音识别系统是这些网络的组合。端到端时代语音识别的端到端方法主要是代价函数发生了变化,但神经网络的模型结构并没有太大变化。总体来说,端到端技术解决了输入序列的长度远大于输出序列长度的问题。端到端技术主要分成两类:一类是CTC方法,另一类是Sequence-to-Sequence方法。传统语音识别DNN-HMM架构里的声学模型,每一帧输入都对应一个标签类别,标签需要反复的迭代来确保对齐更准确。采用CTC作为损失函数的声学模型序列,不需要预先对数据对齐,只需要一个输入序列和一个输出序列就可以进行训练。CTC关心的是预测输出的序列是否和真实的序列相近,而不关心预测输出序列中每个结果在时间点上是否和输入的序列正好对齐。CTC建模单元是音素或者字,因此它引入了Blank。对于一段语音,CTC输出的是尖峰的序列,尖峰的位置对应建模单元的Label,其他位置都是Blank。Sequence-to-Sequence方法原来主要应用于机器翻译领域。
语音识别是门综合性学科,包括声学、语音学、语言学、信号处理、概率统计、信息论、模式识别和深度学习等。上海语音识别在线
数据化的“文字”更容易触发个人对信息的重视程度,有效避免信息的遗漏。会议纪要更准确。系统能够提供对与会人员发言内容的高保真记录,且可以通过文字定位并回听语音,达到声文对应,辅助记录人员更好的理解会议思想、提升纪要结论或纪要决议的准确度。数据安全性强。系统应用后能够降低对记录人员的要求,一名普通的人员在会后简单编辑即可出稿,不需要外聘速录人员,内部参与的员工也可控制到少,故只需做好设备的安全管控,就能有效保障会议信息安全。实现价值提高工作效率。系统的实时语音转写、历史语音转写等功能,能够辅助秘书及文员快速完成会议记录的整理、编制、校对、归档等工作,减少会议纪要的误差率,提升工作人员的工作质量和工作效率。会议安全性增强。系统采用本地化部署加语音转写引擎加密,确保会议数据安全,改变了传统会议模式的会议内容保密隐患问题。节约企业成本。系统的功能是实现语音实时转写、会议信息管理。可根据转写内容快速检索录音内容,提取会议纪要,实现便捷的会议录音管理,此技术可节约会议人力成本约50%。开启会议工作智能化。系统实现了会议管理与人工智能的接轨,为后续推动办公业务与人工智能、大数据的融合奠定了基础。湖北语音识别教程声学模型和语言模型都是当今基于统计的语音识别算法的重要组成部分。
实时语音识别就是对音频流进行实时识别,边说边出结果,语音识别准确率和响应速度均达到业内先进水平。实时语音识别基于DeepPeak2的端到端建模,将音频流实时识别为文字,并返回每句话的开始和结束时间,适用于长句语音输入、音视频字幕、会议等场景。实时语音识别功能优势有哪些?1、识别效果好基于DeepPeak2端到端建模,多采样率多场景声学建模,近场中文普通话识别准确率达98%2、支持多设备终端支持WebSocketAPI方式、Android、iOS、LinuxSDK方式调用,可以适用于多种操作系统、多设备终端均可使用3、服务稳定高效企业级稳定服务保障,专有集群承载大流量并发,高效灵活,服务稳定4、模型自助优化中文普通话模型可在语音自训练平台上零代码自助训练。
取距离近的样本所对应的词标注为该语音信号的发音。该方法对解决孤立词识别是有效的,但对于大词汇量、非特定人连续语音识别就无能为力。因此,进入80年代后,研究思路发生了重大变化,从传统的基于模板匹配的技术思路开始转向基于统计模型(HMM)的技术思路。HMM的理论基础在1970年前后就已经由Baum等人建立起来,随后由CMU的Baker和IBM的Jelinek等人将其应用到语音识别当中。HMM模型假定一个音素含有3到5个状态,同一状态的发音相对稳定,不同状态间是可以按照一定概率进行跳转;某一状态的特征分布可以用概率模型来描述,使用***的模型是GMM。因此GMM-HMM框架中,HMM描述的是语音的短时平稳的动态性,GMM用来描述HMM每一状态内部的发音特征。基于GMM-HMM框架,研究者提出各种改进方法,如结合上下文信息的动态贝叶斯方法、区分性训练方法、自适应训练方法、HMM/NN混合模型方法等。这些方法都对语音识别研究产生了深远影响,并为下一代语音识别技术的产生做好了准备。自上世纪90年代语音识别声学模型的区分性训练准则和模型自适应方法被提出以后,在很长一段内语音识别的发展比较缓慢,语音识别错误率那条线一直没有明显下降。DNN-HMM时代2006年。一个完整的语音识别系统通常包括信息处理和特征提取、声学模型、语言模型和解码搜索四个模块。
即识别准确率为,相较于2013年的准确率提升了接近20个百分点。这种水平的准确率已经接近正常人类。2016年10月18日,微软语音团队在Switchboard语音识别测试中打破了自己的好成绩,将词错误率降低至。次年,微软语音团队研究人员通过改进语音识别系统中基于神经网络的声学模型和语言模型,在之前的基础上引入了CNN-BLSTM(ConvolutionalNeuralNetworkCombinedwithBidirectionalLongShort-TermMemory,带有双向LSTM的卷积神经网络)模型,用于提升语音建模的效果。2017年8月20日,微软语音团队再次将这一纪录刷新,在Switchboard测试中将词错误率从,即识别准确率达到,与谷歌一起成为了行业。另外,亚马逊(Amazon)公司在语音行业可谓后发制人,其在2014年底正式推出了Echo智能音箱,并通过该音箱搭载的Alexa语音助理,为使用者提供种种应用服务。Echo智能音箱一经推出,在消费市场上取得了巨大的成功。如今已成为美国使用广的智能家居产品,至今累计销量已超过2000万台。投资机构摩根士丹利分析师称智能音箱是继iPad之后"成功的消费电子产品"。国内语音识别现状国内早的语音识别研究开始于1958年,中国科学院声学所研究出一种电子管电路,该电子管可以识别10个元音。1973年。由于语音交互提供了更自然、更便利、更高效的沟通形式。湖北语音识别教程
语音识别的精度和速度取决实际应用环境。上海语音识别在线
而且有的产品在可用性方面达到了很好的性能,例如微软公司的Whisper、贝尔实验室的***TO、麻省理工学院的SUMMIT系统、IBM的ViaVioce系统。英国剑桥大学SteveYoung开创的语音识别工具包HTK(HiddenMarkovToolKit),是一套开源的基于HMM的语音识别软件工具包,它采用模块化设计,而且配套了非常详细的HTKBook文档,这既方便了初学者的学习、实验(HTKBook文档做得很好),也为语音识别的研究人员提供了专业且便于搭建的开发平台。HTK自1995年发布以来,被采用。即便如今,大部分人在接受语音专业启蒙教育时,依然还是要通过HTK辅助将理论知识串联到工程实践中。可以说,HTK对语音识别行业的发展意义重大。进入21世纪头几年,基于GMM-HMM的框架日臻成熟完善,人们对语音识别的要求已经不再满足于简单的朗读和对话,开始将目光着眼于生活中的普通场景,因此研究的重点转向了具有一定识别难度的日常流利对话、电话通话、会议对话、新闻广播等一些贴近人类实际应用需求的场景。但是在这些任务上,基于GMM-HMM框架的语音识别系统的表现并不能令人满意。识别率达到80%左右后,就无法再取得突破。人们发现一直占据主流的GMM-HMM框架也不是wan能的。上海语音识别在线