光纤耦合系统中的光纤是一个重要参数是光信号在光纤内传输时功率的损耗。在过去的30多年里,由于技术的逐渐完善,普通光纤中的损耗一直在降低,目前已经趋于本征损耗。熔融硅光纤中具有较低损耗的波长约在1550nm附近,在此波长上的损耗约为0.12dB/km。对于光子晶体光纤而言,实芯光子晶体光纤中损耗达到1dB/km以下,较低损耗已经达到0.28dB/km,与普通光纤相当。由于在传输机制上与普通光纤相同,实芯光子晶体光纤在损耗上不太可能有大幅度的降低。对光子带隙型光子晶体光纤而言,较近报道的较低损耗为1.2dB/km。中空的结构使得这类型光子晶体光纤具有更低的本征损耗极限,因此报道中的数值远远未达到本征损耗值。模块间通过参数传递基本类型的数据,称为数据耦合。云南射频光纤耦合系统
保偏光纤耦合系统是光纤与光纤之间进行可拆卸(活动)连接的系统件,它是把光纤的两个端面精密对接起来,以使发射光纤输出的光能量能大限度地耦合到接收光纤中去,并使其介入光链路从而对系统造成的影响减到较小。对于波导式耦合系统,一般是一种具有Y型分支的元件,由一根光纤输入的光信号可用它加以等分。当耦合系统分支路的开角增大时,向包层中泄漏的光将增多以致增加了过剩损耗,所以开角一般在30°以内,因此波导式光纤耦合系统的长度不能太短。湖北分路器光纤耦合系统供应光纤耦合系统具有的优点:高稳定性。
采用球形光纤端面不只可以提高光纤与光纤之间的耦合效率,而且利于实验光路调试。但是采用这样一种较为简单的耦合方法存在一些比较严重的问题:烧制过程中不易把握温度及用力大小,比较难烧制出所需的球形;采用球形光纤直接耦合的耦合效率远远低于采用分离透镜耦合法所能达到的耦合效率。锥形光纤直接耦合制作锥形光纤的方法有腐蚀、磨削和加热三种方法,前两种方法将光纤包层制成锥体而保持芯径不变,后一种方法则利用电弧放电加热或者利用熔融拉锥机加热,使纤芯与包层一起成比例地拉伸成一定长度和锥度的锥体。
光纤耦合系统的功能:1、借助先进准确的数据交换实现优越。不同的物理求解器拥有实现优越解决方案的不同网格较佳实践。这些网格在发生多物理场交互的界面上看似有比较大不同。光纤耦合系统会采用若干方法准确交换数据。光纤耦合系统会基于要交换的数据量选择恰当的算法和映射技术,并可提供完全守恒和保持轮廓插值方法。支持实现2D到3D和3D到3D的映射。可以借助映射诊断对映射质量进行评估。2、借助先进准确的数据交换实现优越。专属GUI使多物理场设置更直观光纤耦合系统可以在系统内和通过命令行进行访问。无论采用哪种方式,直观的新版图形用户界面可让您简单直接地连接求解器,并可同时指定共享耦合区域和求解器耦合设置。为获取参与协同仿真的不同求解器的边界条件和仿真设置,光纤耦合系统设置要求您首先设置多物理场仿真所涉的求解器。熔融硅光纤中具有较低损耗的波长约在1550nm附近,在此波长上的损耗约为0.12dB/km。
如果想使用几何光线来模拟多模光纤耦合系统,那么光纤的纤芯直径至少要比波长大10倍以上,这样纤芯可以支持比较多比较多的横模。如果光纤是可以传播二阶或三阶模的少模光纤,那我们必须使用物理光学来进行光纤耦合分析。在这篇文章中,“多模”定义为光纤支持太多种横模了,以至于光纤可以被视为一个导光管。当在物面上定义了一个具有确定尺寸和形状的扩展光源后,几何图像分析可以生成任何表面的辐照度分布。此外,如果光线入射到待测面时的角度大于设定的阈值时,它可以过滤掉这部分光线。使用示例文件,我们将演示如何使用几何图像分析功能来计算多模光纤耦合效率。光纤耦合系统具有的优点:高精度。云南射频光纤耦合系统
保偏光纤耦合系统的特点:使用方便。云南射频光纤耦合系统
提供耦合系统服务来管理数据交换及协调单独求解器的任务执行,以便准确捕获通常在单独求解器中进行仿真的物理模型之间的复杂交互,这对于了解整个问题至关重要。紧密的流固交互(例如在需要控制温度的风力涡轮机叶片和电机冷却应用中出现此类问题),都是依赖耦合系统功能的应用示例。若耦合系统能够准确管理对应用进行建模时所需求解器之间的数据交换,并协调求解器之间任务执行以确保多物理场仿真顺利收敛,这对影响工程决策的高保真多物理场仿真至关重要。云南射频光纤耦合系统