边缘计算的中心理念是:计算应更加靠近产生数据的源头,其应更加贴近用户。此中的“边缘”是与数据中心相对的。在网路距离上,表示距离近,即离用户距离上更近。这是由于随着网络规模的缩小,带宽、延迟、抖动等不稳定因素都将更加易于控制与改进。在空间上,也表示距离近,这主要是指边缘计算资源与用户共处于同一个场景当中,典型的就是位置。根据这些情景信息,可以为用户提供更为优良的个性化服务,典型的如基于位置信息的服务。需要说明的是,网络距离和空间距离有时可能不是时刻保持关联的,但应用可以根据自己的需求来进行更为合适的节点选择。在网络边缘的资源是许多的,主要有用户终端,如手机、个人电脑等等;基础设施,如wifi接入点、蜂窝网络基站、路由器等等;嵌入式设备,如摄像头、机顶盒等等;小型计算中心,如Cloudlet等等。这些资源的数据极其庞大,又相互分开,分散于用户周围,而这些都可以作为边缘节点。雾计算使得云更接近于网络的边缘。山西小型化边缘计算智慧校园
随着边缘计算的兴起,理解边缘设备所涉及的另一项技术也比较重要,它就是雾计算。边缘计算具体是指在网络的“边缘”处或附近进行的计算过程,而雾计算则是指边缘设备和云端之间的网络连接。换句话说,雾计算使得云更接近于网络的边缘;因此,根据OpenFog的说法,“雾计算总是使用边缘计算,而不是边缘计算总是使用雾计算。”说回我们的火车场景:传感器能够收集数据,但不能立即就数据采取行动。例如,如果一名火车工程师想要了解火车车轮和刹车是如何运行的,他可以使用历史累计的传感器数据来预测零部件是否需要维修。在这种情况中,数据处理使用边缘计算,但它并不总是即时进行的(与确定引擎状态不同)。而使用雾计算,短期分析可以在给定的时间点实现,而不需要完全返回到中心云。云南多网口边缘计算边缘计算当中的边缘资源有:计算机网络站点公共存储区无线访问点交换机路由器基站等等。
边缘计算处理数据中心明显的优势有以下几点:1、边缘计算可以实时或更快的进行数据处理和分析,让数据处理更靠近源,而不是外部数据中心或者云,可以缩短延迟时间。2、在成本预算上可以较大减轻经费预算。企业在本地设备上的数据管理解决方案所花费的成本较大低于云和数据中心网络。3、减少网络流量。随着物联网设备数量的增加,数据生成继续以创纪录的速度增长。结果,网络带宽变得更加有限,压倒了云,导致更大的数据瓶颈。4、提高应用程序效率。通过降低延迟级别,应用程序可以更高效、更快速地运行。5、个性化:通过边缘计算,可以持续学习,根据个人的需求调整模型,带来个性化互动体验。
技术正在以前所未有的速度改变世界,物联网则走在了时代较前沿。据预测,到2030年,全球包括智能摄像头在内将有约500亿台联网设备。这些摄像头以及一般设备的智能性和影响力取决于几个方面:设备感知周围世界所发生事件的能力、应用程序分析设备信息并实时做出反应的能力、该应用程序运行的云以及网络的容量和响应能力等。由于MEC的力量改变了我们将数据带到云端的速度,因此,这意味着MEC将成为IT基础设施的重要组成部分。然而,许多企业对MEC仍然知之甚少,更不清楚它将如何运行。什么是MEC?MEC表示多接入边缘计算。它从网络的“边缘”提供IT和云服务,将公有云的敏捷性与本地或设备计算的高响应能力相结合。这使得数据存储和处理距离用户和设备更近,而不是依赖于可能远在数英里之外的中枢。边缘计算仍处于起步阶段,有可能为更高效的分布式计算铺平道路。
边缘计算系统需要多台服务器同时工作。当服务器数量增多时,其中的一些服务器出现故障是在所难免的。我们希望这样的情况不会对整个系统造成太大的影响。在系统中的一部分节点出现故障之后,系统的整体不影响客服端的读/写请求称为可用性。边缘计算系统中的多台服务器通过网络进行连接。但是我们无法保证网络是一直通畅的,边缘式系统需要具有一定的容错性来处理网络故障带来的问题。一个令人满意的情况是,当一个网络因为故障而分解为多个部分的时候,边缘计算系统仍然能够正常工作。边缘计算的价值:分布式和低延迟计算。深圳低延时边缘计算园区识别
边缘计算将在工业应用中发挥重要作用。山西小型化边缘计算智慧校园
如今,人们越来越喜欢佩戴健身追踪设备、血糖监测仪、智能手表和其他监测健康状况的可穿戴设备。但是,要真正地从所收集的海量数据中获益,实时分析可能是必不可少的--许多的可穿戴设备直接连接到云上,但也有其他的一些设备支持离线运行。一些可穿戴健康监控器可以在不连接云的情况下本地分析脉搏数据或睡眠模式。然后,医生可以当场对病人进行评估,并就病人的健康状况提供即时反馈。但在医疗保健领域,边缘计算的潜力远不局限于可穿戴设备。不妨想想,快速的数据处理能够给远程患者监控、住院患者护理以及医院和诊所的医疗管理带来多大的好处。医生和临床医生将能够为患者提供更快、更好的护理,同时患者所生成的健康数据也多了一层安全保护。医院病床平均有20个以上的联网设备,会产生大量的数据。这些数据的处理将直接发生在更靠近边缘的地方,而不是将保密数据发送到云端,因此能够避免数据被不当访问的风险。山西小型化边缘计算智慧校园