边缘计算的中心理念是:计算应更加靠近产生数据的源头,其应更加贴近用户。此中的“边缘”是与数据中心相对的。在网路距离上,表示距离近,即离用户距离上更近。这是由于随着网络规模的缩小,带宽、延迟、抖动等不稳定因素都将更加易于控制与改进。在空间上,也表示距离近,这主要是指边缘计算资源与用户共处于同一个场景当中,典型的就是位置。根据这些情景信息,可以为用户提供更为优良的个性化服务,典型的如基于位置信息的服务。需要说明的是,网络距离和空间距离有时可能不是时刻保持关联的,但应用可以根据自己的需求来进行更为合适的节点选择。在网络边缘的资源是许多的,主要有用户终端,如手机、个人电脑等等;基础设施,如wifi接入点、蜂窝网络基站、路由器等等;嵌入式设备,如摄像头、机顶盒等等;小型计算中心,如Cloudlet等等。这些资源的数据极其庞大,又相互分开,分散于用户周围,而这些都可以作为边缘节点。边缘计算则是一种合适的、具有成本效益的替代方案。人工智能边缘计算电力巡检
边缘计算仍处于起步阶段,有可能为更高效的分布式计算铺平道路。统一数据连接和数据聚合是业务智能的基础,面对当前工业现场存在的多样化与异构的技术和标准,离不开跨厂商、跨领域的数据集成与互操作。网络边缘侧的本地计算服务无疑会在异构环境中迎来IT厂商、IT方案商以及开发者集成融合服务的挑战,标准化亟待形成。许多组织正在定义各种边缘计算标准,例如美国国家标准和技术协会(NIST)、IEEE标准协会、国际标准化组织(ISO)、云计算标准客户组织会(CSCC)和国际电信联盟(ITU)等。只有当边缘节点的性能可以根据普遍认可的度量指标可靠的进行基准测试时,才能形成标准。天津人工智能边缘计算OEM生产需要对边缘节点的峰值时间周全了解,以便可以用灵活的方式来分割和调度任务。
智能制造有望从现代工厂大量部署的传感器中获得洞见。由于能够减少滞后,边缘计算可能会使得制造流程能够更快速地做出响应和变动,能够实时地应用数据分析得出的洞见和实时行动。这可能包括在机器过热之前将其关闭。一家工厂可以使用两个机器人来完成同样的任务,两个机器人装有传感器,并连接到一个边缘设备上。边缘设备可以通过运行一个机器学习模型来预测其中一个机器人是否会操作失败。如果边缘设备断定机器人比较可能会出现故障,它就会触发行动来阻止或减慢机器人的运转。这会使得工厂能够实时地评估潜在的故障。如果机器人能够自己处理数据,它们也可能变得更加自给自足和反应灵敏。边缘计算应该支持更快地从大数据中更多的洞见,以及支持将更多的机器学习技术应用到业务运营中。目标是,挖掘实时产生的海量数据的巨大价值,防止安全隐患,并减少工厂车间机器运转中断的情况。
边缘计算将会催生更多的发展机遇,在此我们明确的潜在机会:1、微型操作系统和虚拟化。基于微型操作系统或微型内核的研究可以解决在异构边缘节点上部署应用的挑战。有研究表明,跨越多个虚拟设备复用设备硬件的移动容器可以提供与本地硬件接近的性能。容器技术(如Docker)正在成熟,并且能够在异构平台上快速部署应用程序。2、产学研合作。边缘计算为产业界和学术界提供了独特的发展机会。边缘计算领域的研究可以由行业合作伙伴(例如移动运营商和开发人员、软件工具开发商和云服务提供商等)以及感兴趣的学术合作伙伴共同驱动,以实现双方的共同利益。边缘计算是一个相对于中心化的云计算的概念。
随着我们朝着更加互联的生态系统迈进,数据生成将继续飞速增加,尤其是在5G技术取得腾飞,进一步加快网络连接以后。虽然中心云或数据中心传统上一直是数据管理、处理和存储的选择,但这两种方案都存在局限性。边缘计算可以充当替代解决方案,但由于该技术仍处于起步阶段,因此还比较难预料其未来的发展。设备能力方面的挑战--包括开发能够处理云端分流的计算任务的软件和硬件的能力--可能会出现。能否教会机器在能够在边缘执行的计算任务和需要云端执行的计算任务之间切换,也是一个挑战。即便如此,随着边缘计算更多地被采用,企业将有更多的机会在各个领域测试和部署这种技术。有些用例可能比其他用例更能证明边缘计算的价值,但整体来看,该技术对我们整个互联生态系统的潜在影响则可能是翻天覆地的。边缘计算在其中发挥着重要作用,成为工业物联网技术的有效补充。广东轻便边缘计算园区识别
边缘计算的优势:由于减少了中间传输的过程,数据处理的速度也更快。人工智能边缘计算电力巡检
其他行业领域的应用:其他可以利用边缘计算技术的行业包括金融业和零售业。这两个行业都使用大型的客户和后端数据集来提供从选股信息到店内服装摆放的各种信息,可以从减少对云计算的依赖中获益。零售可以使用边缘计算应用程序来增强顾客体验。如今,许多零售商都在致力于改善店内体验,优化数据收集和分析的方式对它们而言一定比较有意义--尤其是考虑到许多零售商已经在尝试使用联网的智能显示屏。此外,许多人使用店内平板电脑所生成的销售点数据,这些数据会被传输到云端或数据中心。借助边缘计算,数据可以在本地进行分析,从而减少敏感数据泄漏的风险。人工智能边缘计算电力巡检