边缘计算(edgecomputing)是指一种在网络边缘进行计算的新型计算模式,其对数据的处理主要包括两部分:其一是下行的云服务,其二是上行的万物互联服务。其中,边缘计算当中的“边缘”是一个相对的概念,主要是指从数据源到云计算中心路径之间的任意计算、存储以及网络相关资源。我们可以将这条路径上的资源看作是一个连续统一体。在从数据源的一端到云服务中心的一端,在此路径上根据应用的具体需求和实际应用场景,边缘(edge)可以是此条路径之上的一个或多个资源节点。边缘计算当中的边缘资源有:计算机网络站点公共存储区无线访问点交换机路由器基站等等。边缘计算和云服务中心以及大数据处理中心之间可连接应用的场景:智慧城市车联网智能工厂智能社区智能家居灾难搜救等等。开放和安全的使用边缘节点:安全横跨云计算和边缘计算,需要实施端到端的防护。吉林边缘计算园区识别
一般而言,对实时性要求不高的、与报表有关的一段时间周期内的生产数据,往往会上传到云端进行分析;而与生产节拍密切相连、实时性要求高数据分析,往往就需要在边缘计算环节来完成。随着制造业的数字化转型不断深入,对数据在不同场景下如何进行不同的分析从而挖掘其价值也在逐渐明晰,边缘计算的重要性因而逐渐凸显。边缘计算技术横跨IT(信息技术)、OT(运行技术)和CT(通讯技术)多个领域,要落地离不开不同领域公司之间的密切合作,各取所长。过去一年里,不同相关行业的都开始推出专门针对边缘计算的产品,这一并不新鲜的概念刚刚开始进入落地阶段。贵州人工智能边缘计算OEM生产边缘计算的价值:可持续的能源消耗。
边缘计算的开发归功于IoT设备的指数级增长,这些设备连接到Internet以便从云中接收信息或将数据传递回云中。许多物联网设备在其运行过程中会生成大量数据。边缘计算的好处:对于许多公司来说,单是成本节约就可能成为部署边缘计算架构的驱动力。在许多应用中采用云的公司可能已经发现,带宽成本比他们预期的要高。但是,边缘计算的较大好处越来越多地是能够更快地处理和存储数据,从而实现了对公司至关重要的更高效的实时应用程序。在进行边缘计算之前,扫描人脸以进行面部识别的智能手机将需要通过基于云的服务来运行面部识别算法,这将需要大量时间来处理。使用边缘计算模型,鉴于智能手机的功能日益强大,该算法可以在边缘服务器或网关上本地运行,甚至可以在智能手机本身上运行。虚拟现实和增强现实、无人驾驶、无人驾驶汽车、智慧城市、甚至楼宇自动化系统等应用都需要快速处理和响应。
边缘计算是指靠近物或数据源头的一侧,采用网络、计算、存储、应用中心能力为一体的开放平台。网络边缘侧可以是从数据源到云计算中心之间的任意功能实体,这些实体搭载着融合网络、计算、存储、应用中心能力的边缘计算平台,为终端用户提供实时、动态和智能的服务计算。与像云端中进行处理和算法决策不同,边缘计算是将智能和计算推向更接近实际的行动,而云计算需要在云端进行计算,主要得差异体现在多源异构数据处理、带宽负载和资源浪费、资源限制和安全和隐私保护等方面。网络边缘数据涉及个人隐私,传统的云计算模式需要将这些隐私数据上传至云计算中心,这将增加泄露用户隐私数据的风险。在边缘计算中,身份认证协议的研究应借鉴现有方案的优势之处,同时结合边缘计算中分布式、移动性等特点,加强统一认证、跨域认证和切换认证技术的研究,以保障用户在不同信任域和异构网络环境下的数据和隐私安全。边缘计算处理数据中心明显的优势:减少网络流量。
开放和安全的使用边缘节点:安全横跨云计算和边缘计算,需要实施端到端的防护。由于更贴近万物互联的设备,网络边缘侧访问控制与威胁防护的广度和难度因此大幅提升。边缘侧安全主要包含设备安全、网络安全、数据安全与应用安全。此外,关键数据的完整性、保密性是安全领域需要重点关注的内容。如果把终端设备(例如交换机、路由器和基站)当作可共享接入的边缘节点,则需要解决许多问题:首先,需要定义边缘设备使用者和拥有者相关联的风险。其次,当设备用于边缘计算节点时,设备的原有的功能不能被损害。第三,边缘节点上的多重用户都需要将安全性作为首要关注指标。第四,需要向边缘节点的用户保证较低服务水平。结尾,需要考虑工作负载、计算能力、数据位置和迁移、维护成本和能源消耗,以便建立合适的定价模型。边缘计算满足行业数字化在敏捷连接、实时业务、数据优化、应用智能、安全与隐私保护等方面的关键需求。甘肃多网口边缘计算VR
与大型服务器不同,由于硬件限制,边缘节点不支持大型软件。吉林边缘计算园区识别
边缘计算之所以存在,是因为它承担了与云计算不同的功能。在制造现场,产生的数据多样而繁杂,然而并非所有数据都需要上传到云端进行分析、处理。一方面带来流量、带宽的需求,背后是使用云服务的费用问题;此外,公司对上传所有数据到云端也存在数据安全的担忧。更重要的在于数据如何进行利用。现场的数据,有的是无效信息,譬如设备在生产间隔期间的数据,往往就不需要全部上传,而是需要经过截取处理;有的数据需要立刻处理,譬如一些硬件产品的实时检测预警信息反馈要求在毫秒级,而上传到云端进行处理再反馈到现场的时延可能达到秒级,全部通过云端来分析就会较大延缓现场的生产效率,这就需要靠近数据源的边缘设备来进行处理。吉林边缘计算园区识别