发现边缘节点:到2020年将有500亿的终端和设备联网,除了边缘设备与终端联网较大的“异构”特征之外,产品生命周期越来越短、个性化需求越来越高、全生命周期管理和服务化的趋势越来越明显,这些新趋势都需要边缘计算提供强大的技术支撑。如何在分布式计算环境中发现资源和服务是一个有待拓展的领域。为了充分利用网络的边缘设备,需要建立某种发现机制,找到可以分散式部署的适当节点。因为可用设备的数量庞大,这些机制不能依靠人工手动。此外,还需要使用多种异构设备满足较新的计算需求,比如大规模的机器学习任务。这些机制必须在不增加等待时间或损害用户体验的前提下,实现不同层次和等级的计算工作流中无缝集成,原有的基于云计算的机制在边缘计算领域不再适用。边缘计算将在工业应用中发挥重要作用。珠海算力强大边缘计算智慧医疗
在边缘计算的发展过程中,还有一个概念值得注意,这就是所谓「雾计算」。这两个概念有容易混淆。「雾计算」更强调在设备的网关里处理数据,数据被「雾计算」收集到设备的网关,进而处理、存储,并将处理后的数据发挥需要数据的设备中。而边缘计算更强调「边缘」,也就是更靠近数据生成的设备端,「雾计算」则介于云计算和边缘计算之间。这也意味着,边缘计算有着诸多「先天优势」,其一,更实时、更快速的数据处理能力。由于减少了中间传输的过程,数据处理的速度也更快。其二,成本更低。边缘计算处理的数据是「小数据」,从数据计算、存储上都具有成本优势。其三,更低的网络带宽需求。随着联网设备的增多,网络传输压力会越来越大,而边缘计算的过程中,与云端服务器的数据交换并不多,因此也不需要占用太多网络带宽;第四,提升应用程序的效率。结合上面的三个优势来看,当数据处理更快、网络传输压力更小、成本也更低的时候,应用程序的效率也会较大提升。第五,边缘计算让数据隐私保护变得更具操作性,这在今年5月欧盟通过史上较严格的数据保护法律之后意义重大。江西AI边缘计算AR边缘计算非常适合应用于农业,因为农场经常处于偏远的位置和恶劣的环境中。
边缘计算的模式和拓扑结构是什么样的呢。比如要在一套数据采集系统里,以一个云服务器为中心,移动客户端,PC客户端或第三方接口等接入到云服务器获取数据,而数据采集方呢,由数据采集模块来连接到云服务中。数据采集模块可以采集PLC,变频器,智能仪表等,将数据上传到云服务器中,由服务器进行数据分析和计算,然后PC或移动客户端,第三方接口就可以获取数据分析的结果。但是这种情况下,随着设备的接入越来越多,云服务器的负担也会越来越重,而且接入的PLC,控制器等的种类也越来越多,原来的云服务数据计算模式难以满足越来越复杂的应用。这时候边缘计算就应运而生了。在原拓扑结构不变的情况,可无缝引入边缘计算。在数据采集模块端开放边缘计算功能,将复杂的计算,策略,规则等,由数据采集模块进行运算,得到输出结果后,只需要将结果上传到云服务中。再由PC客户端,移动客户端及第三方接口从云服务获取。
云计算在提升共享资源和规模经济性方面类似于公用的电网,可以提供几乎没有限制的计算能力,并且可以按照需要提供数量巨大的存储量。另外,边缘计算正在变得普遍起来,这是一种低成本、高性能计算和通信的部署方法,导致计算和数据存储尽可能靠近产生数据的源头,这样来改善响应时间,增强数据与其生成源头的前后关系和相互关系,同时可按要求就地执行,而无需往返云端与就地。在计算机和工业自动化应用的历史上,处理计算往往都被放置在远离网络边缘的地方。直到还有许多应用还在这样做。现今的边缘设备可以是一台小的定位节点的计算机,或者是嵌入在传感器、执行器和其他设备中的SoC,具有特别高的性价比。将这些边缘设备部署在就地,使他们像移动的智能手机一样具有强大的计算能力和不高的成本。边缘计算处理数据中心明显的优势:减少网络流量。
业务流程优化、运维自动化与业务创新驱动业务走向智能,边缘智能,能够带来明显的效率提升与成本优势。事实上,对于从事工业自动化工作的人而言,边缘计算并不陌生。比如,在目前普遍采用的基于PLC、DCS、工控机和工业网络的控制系统中,位于底层、嵌于设备中的计算资源,或多或少都是边缘计算的资源。目前规模以上冶金企业,其信息化已经做得颇具成效,但缺少的恰恰是末端智能。冶金方面的数据经常会出现完整性和一致性的问题,俗称“脏”数据。解决不好这方面的问题,会给能源管理和智能管理环节造成比较大的困扰。边缘计算在其中发挥着重要作用,成为工业物联网技术的有效补充。边缘计算则让自动驾驶汽车更快速地处理数据成为可能。山东边缘计算智慧校园
边缘计算使计算和数据存储更靠近收集数据的设备,而不是依赖于可能远在数千英里之外的中心位置。珠海算力强大边缘计算智慧医疗
随着我们朝着更加互联的生态系统迈进,数据生成将继续飞速增加,尤其是在5G技术取得腾飞,进一步加快网络连接以后。虽然中心云或数据中心传统上一直是数据管理、处理和存储的选择,但这两种方案都存在局限性。边缘计算可以充当替代解决方案,但由于该技术仍处于起步阶段,因此还比较难预料其未来的发展。设备能力方面的挑战--包括开发能够处理云端分流的计算任务的软件和硬件的能力--可能会出现。能否教会机器在能够在边缘执行的计算任务和需要云端执行的计算任务之间切换,也是一个挑战。即便如此,随着边缘计算更多地被采用,企业将有更多的机会在各个领域测试和部署这种技术。有些用例可能比其他用例更能证明边缘计算的价值,但整体来看,该技术对我们整个互联生态系统的潜在影响则可能是翻天覆地的。珠海算力强大边缘计算智慧医疗